
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN AUDIO ARCHITECTURE INTEGRATING SOUND
AND LIVE VOICE FOR VIRTUAL ENVIRONMENTS

by

Eric M. Krebs

September 2002

 Thesis Advisor: Russell D. Shilling
 Co-Advisor: Rudolph P. Darken

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: An Audio Architecture Integrating Sound and Live
Voice for Virtual Environments
6. AUTHOR(S) Eric M. Krebs

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The purpose behind this thesis was to design and implement audio system architecture, both in hardware and in

software, for use in virtual environments. The hardware and software design requirements were to provide the ability to add
sounds, environmental effects such as reverberation and occlusion, and live streaming voice to any virtual environment
employing this architecture.

Several free or open-source sound APIs were evaluated, and DirectSound3D was selected as the core component
of the audio architecture. Creative Labs Environmental Audio Extensions (EAX) was integrated into the architecture to
provide environmental effects such as reverberation, occlusion, obstruction, and exclusion.

Voice over IP (VoIP) technology was evaluated to provide live, streaming voice to any virtual environment.
DirectVoice was selected as the voice component of the architecture due to its integration with DirectSound3D. However,
extremely high latency considerations with DirectVoice, and any other VoIP application or software, required further research
into alternative live voice architectures for inclusion in virtual environments. Ausim3D’s GoldServe Audio Localizing Audio
Server System was evaluated and integrated into the hardware component of the audio architecture to provide an extremely
low-latency, live, streaming voice capability.

15. NUMBER OF
PAGES

197

14. SUBJECT TERMS
Virtual Environments, Audio, Voice Over IP (VoIP), Sound, Spatialized Sound

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

AN AUDIO ARCHITECTURE INTEGRATING SOUND AND LIVE VOICE FOR
VIRTUAL ENVIRONMENTS

Eric M. Krebs

Commander, United States Naval Reserve
B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS AND
SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Eric M. Krebs

Approved by: Russell D. Shilling

Thesis Advisor

Rudolph P. Darken
Co-Advisor

Rudolph P. Darken
Chair, MOVES Academic Committee

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The purpose behind this thesis was to design and implement audio system

architecture, both in hardware and in software, for use in virtual environments. The

hardware and software design requirements were aimed at implementing acoustical

models, such as reverberation and occlusion, and live audio streaming to any simulation

employing this architecture.

Several free or open-source sound APIs were evaluated, and DirectSound3D

was selected as the core component of the audio architecture. Creative Technology Ltd.

Environmental Audio Extensions (EAX 3.0) were integrated into the architecture to

provide environmental effects such as reverberation, occlusion, obstruction, and

exclusion.

Voice over IP (VoIP) technology was evaluated to provide live, streaming voice

to any virtual environment. DirectVoice was selected as the voice component of the

VoIP architecture due to its integration with DirectSound3D. However, extremely high

latency considerations with DirectVoice, and any other VoIP application or software,

required further research into alternative live voice architectures for inclusion in virtual

environments. Ausim3D’s GoldServe Audio System was evaluated and integrated into

the hardware component of the audio architecture to provide an extremely low-latency,

live, streaming voice capability.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SOUND IN VIRTUAL ENVIRONMENTS...1
B. RESEARCH OBJECTIVE ...2
C. THESIS ORGANIZATION..4

II. BACKGROUND ..7
A. SPATIAL HEARING AND SOUND ...7
B. SOUND AND EMOTION ...10

1. Linking Performance with Optimum Stress or Arousal10
2. Linking Arousal with Audio ...11

C. SOUND AND TRAINING ..12
1. Linking Audio with Performance...12
2. Linking Performance with Memory, Expertise and Training.......13
3. Selected Task Analyses ..15
4. Summary...17

D. VOICE OVER IP (VOIP) TECHNOLOGY ...17
E. LIVE VOICE IN VIRTUAL ENVIRONMENTS.......................................22
F. ARCHITECTURAL ACOUSTICS..27

III. CURRENT ARCHITECTURE DESIGNS..29
A. INTRODUCTION..29
B. OPEN AUDIO LIBRARY (OPENAL) ..29
C. DIRECTSOUND3D..31
D. EAX 3.0..33
E. SOFTWARE API SUMMARY ..35
F. AUDIO RESOURCE MANAGEMENT..35
G. AUSIM3D GOLDSERVER ..37
H. OVERALL SYSTEM ARCHITECTURE...39

IV. VOICE LATENCY ANALYSIS...45
A. INTRODUCTION..45
B. EXPERIMENTAL DESIGN...46

1. Apparatus ...46
2. Procedures ..46

C. RESULTS AND ANALYSIS ..47
D. SUMMARY ..49

V. SOFTWARE IMPLEMENTATION ...51
A. INTRODUCTION..51
B. GFAUDIO...52

1. gfAudioGlobal ..52
2. gfListener ..53
3. gfSoundObject..56

 vii

4. gfAudioEnvironment ...61
5. gfAudioEnvironmentTransition ...62
6. gfAudioEnvironmentManager ...64
7. gfNetVoice...67

C. AUSERVERLIB...70
1. auSystem ...70
2. auBase ...70
3. auSource..71
4. auListener ...72
5. auSound ..75
6. auChannel...76
7. auNotify...77
8. auTools ..78
9. Summary...78

VI. CONCLUSIONS AND RECOMMENDATIONS...79
A. SUMMARY ..79
B. RECOMMENDATIONS...79
C. FUTURE WORK...81

APPENDIX A. GFAUDIO DOCUMENTATION ..83
A. GFAUDIOENVIRONMENT CLASS REFERENCE83

1. Public Types ...83
2. Public Methods...83
3. Public Attributes ..84
4. Detailed Description...84
5. Member Enumeration Documentation..84
6. Constructor and Destructor Documentation...................................85
7. Member Function Documentation ...85
8. Member Data Documentation ..86

B. GFAUDIOENVIRONMENTMANAGER CLASS REFERENCE86
1. Public Methods...86
2. Public Attributes ..87
3. Detailed Description...87
4. Constructor and Destructor Documentation...................................87
5. Member Function Documentation ...87
6. Member Data Documentation ..87

C. GFAUDIOENVIRONMENTTRANSITION CLASS REFERENCE.......88
1. Public Methods...88
2. Public Attributes ..88
3. Detailed Description...88
4. Constructor and Destructor Documentation...................................89
5. Member Function Documentation ...89
6. Member Data Documentation ..90

D. GFAUDIONET CLASS REFERENCE...90
1. Public Methods...90

 viii
2. Public Attributes ..90

3. Constructor and Destructor Documentation...................................91
4. Member Data Documentation ..91

E. GFCUBE CLASS REFERENCE ...91
1. Public Methods...91
2. Public Attributes ..91
3. Detailed Description...91
4. Constructor and Destructor Documentation...................................92
5. Member Function Documentation ...92
6. Member Data Documentation ..93

F. GFLISTENER CLASS REFERENCE ..93
1. Public Methods...93
2. Public Attributes ..94
3. Protected Methods ...94
4. Protected Attributes...94
5. Detailed Description...95
6. Constructor and Destructor Documentation...................................95
7. Member Function Documentation ...95
8. Member Data Documentation ..98

G. GFNETVOICE CLASS REFERENCE ...98
1. Public Methods...98
2. Detailed Description...100
3. Constructor and Destructor Documentation.................................100
4. Member Function Documentation ...100

H. GFSHAPE CLASS REFERENCE ...102
1. Public Methods...102
2. Public Attributes ..103
3. Protected Attributes...103
4. Detailed Description...103
5. Constructor and Destructor Documentation.................................103
6. Member Function Documentation ...103
7. Member Data Documentation ..104

I. GFSOUNDOBJECT CLASS REFERENCE ..104
1. Public Types ...104
2. Public Methods...104
3. Public Attributes ..107
4. Protected Methods ...107
5. Protected Attributes...108
6. Detailed Description...108
7. Member Enumeration Documentation..109
8. Constructor and Destructor Documentation.................................109
9. Member Function Documentation ...109
10. Member Data Documentation ..116

J. GFSPHERE CLASS REFERENCE ..118
1. Public Methods...118
2. Public Attributes ..119

 ix

3. Detailed Description...119
4. Constructor and Destructor Documentation.................................119
5. Member Function Documentation ...119
6. Member Data Documentation ..120

K. VOICE_INFO STRUCT REFERENCE ...120
1. Public Attributes ..120
2. Detailed Description...121
3. Member Data Documentation ..121

APPENDIX B. AUSERVERLIB DOCUMENTATION ..123
A. AUBASE CLASS REFERENCE..123

1. Public Methods...123
2. Public Attributes ..123
3. Protected Attributes...123
4. Detailed Description...123
5. Constructor and Destructor Documentation.................................123
6. Member Function Documentation ...124
7. Member Data Documentation ..124

B. AUCHANNEL CLASS REFERENCE ..125
1. Public Methods...125
2. Public Attributes ..125
3. Detailed Description...125
4. Constructor and Destructor Documentation.................................126
5. Member Function Documentation ...126
6. Member Data Documentation ..127

C. AULIST CLASS REFERENCE ...127
1. Public Methods...127
2. Constructor and Destructor Documentation.................................128
3. Member Function Documentation ...128

D. AULISTENER CLASS REFERENCE..129
1. Public Methods...129
2. Public Attributes ..130
3. Detailed Description...130
4. Constructor and Destructor Documentation.................................131
5. Member Function Documentation ...131
6. Member Data Documentation ..133

E. AUPOSITION CLASS REFERENCE...133
1. Public Methods...133
2. Public Attributes ..134
3. Detailed Description...134
4. Constructor and Destructor Documentation.................................135
5. Member Function Documentation ...135
6. Member Data Documentation ..137

F. AURADPATTERN CLASS REFERENCE ..137
1. Public Methods...137
2. Public Attributes ..138

 x

3. Detailed Description...138
4. Constructor and Destructor Documentation.................................138
5. Member Function Documentation ...138
6. Member Data Documentation ..139

G. AUREFDATA CLASS REFERENCE...139
1. Public Methods...139
2. Public Attributes ..139
3. Detailed Description...139
4. Constructor and Destructor Documentation.................................139
5. Member Data Documentation ..139

H. AUSERVERGUI CLASS REFERENCE ..140
1. Public Methods...140
2. Detailed Description...140
3. Constructor and Destructor Documentation.................................140

I. AUSOUND CLASS REFERENCE ..140
1. Public Methods...140
2. Public Attributes ..141
3. Detailed Description...141
4. Constructor and Destructor Documentation.................................141
5. Member Function Documentation ...142
6. Member Data Documentation ..143

J. AUSOURCE CLASS REFERENCE ...143
1. Public Methods...143
2. Public Attributes ..144
3. Protected Methods ...145
4. Protected Attributes...145
5. Detailed Description...145
6. Constructor and Destructor Documentation.................................145
7. Member Function Documentation ...145
8. Member Data Documentation ..148

K. AUSYSTEM CLASS REFERENCE..149
1. Public Methods...149
2. Public Attributes ..149
3. Constructor and Destructor Documentation.................................149
4. Member Function Documentation ...150
5. Member Data Documentation ..150

L. UPDATEGUI CLASS REFERENCE..151
1. Public Methods...151
2. Detailed Description...151
3. Constructor and Destructor Documentation.................................151

APPENDIX C. VOICE LATENCY DATA...153
A. INTRODUCTION..153
B. AUSIM3D GOLDSERVE DATA...154
C. DIRECTVOICE DATA...161
D. SAMPLE DIRECTVOICE LIVE VOICE ..172

 xi

LIST OF REFERENCES..173

BIBLIOGRAPHY..175

INITIAL DISTRIBUTION LIST ...177

 xii

LIST OF FIGURES

Figure 1. Taxonomy of Spatial Manipulation (From the Operator’s Perspective), or
of Spatial Hearing (From the Listener’s Perspective). (Begault, 1994).7

Figure 2. Reversal Error and Localization Error (Blur). (Begault, 1994).8
Figure 3. Yerkes Dodson Law. (Wickens, 1999). ...11
Figure 4. Example of Critical Cue Inventory for Pier Side Ship Handling -

Verify_Engines_Are_Started_And_Online. (Grassi, 2000).15
Figure 5. Example of Underway Replenishment Verbal Audio Cues. (Norris, 2000)....16
Figure 6. VoIP Components..19
Figure 7. Comparison of Non-Spatially Separated (Left) and Spatially Separated

(Right) Audio Conditions. (Nelson, Bolia, Ericson, and McKinley, 1999).....25
Figure 8. Single Independent User Audio Implementation...40
Figure 9. Multiple, Physically Co-Located User Audio Implementation.42
Figure 10. Multiple Distributed User Audio Implementation...43
Figure 11. DirectSound3D and EAX Initialization Code. ...52
Figure 12. Creating the Primary Sound Buffer. ..53
Figure 13. gfListener Configuration Source Code. ...54
Figure 14. Setting an EAX Property for the Listener. ...55
Figure 15. gfSoundObject Obtaining Resources for Play or Loop.57
Figure 16. Playing a Sound with gfSoundObject. ...58
Figure 17. Directional Sound Source. ...59
Figure 18. gfSoundObject Send Method...61
Figure 19. Audio Transition Zone...63
Figure 20. SetTransitionEffect Method...64
Figure 21. Portion of gfAudioEnvironmentManager Update() Method.66
Figure 22. gfNetVoice Host Setup. ...68
Figure 23. gfNetVoice Client Connection Source Code. ..69
Figure 24. auSource Radiation Pattern Examples (www.ausim3d.com).72
Figure 25. auListener Config() Method. ...72
Figure 26. auListener SetVolumeForListener Method..74
Figure 27. auListener SetExclusive Method. ..75
Figure 28. auSound Play() and Loop() Methods...75
Figure 29. auSound LinkToListener Method. ...76

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

LIST OF TABLES

Table 1. Average Latency Measurement in Milliseconds..47
Table 2. Criteria for Determining EAX Effect. ..66

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife and children for putting up with

the hectic schedule, lost weekends, late nights and my generally “occupied” nature during

the this work. Without their patience and support, I would not have made it.

LCDR Russ Shilling, as my primary thesis advisor, was absolutely instrumental to

my completion of this course of study. His steadfast support and guidance made this

thesis not only educational, but also fun. From purchasing equipment on short notice to

our Friday afternoon thesis “discussions”, he was always there for me. Dr. Rudy Darken,

my Co-Advisor, was equally as important to my success. Through four classes and this

thesis, Rudy constantly motivated me to think about my “product” from the standpoint of

the consumer - I am confident it is better and it is in no small part due to Rudy’s support

and encouragement. Lastly, Erik Johnson, as Project Lead for the NPS-developed

GFLIB virtual environment library, was crucial to the software implementation portion of

this thesis. Hired as a code writer, Erik has been one of the best teachers I have ever had.

To these three and the many others who supported and helped me through this process,

my heartfelt thanks.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTION

In the military, most new training systems under consideration today involve

implementation of a virtual environment. As real world training locations become scarce

and training budgets are trimmed, training system developers look more and more

towards virtual environments as the answer. Virtual environments provide training

system developers with several key benefits - reconfigurability, variability in training

scenarios, and training for distributed teams and individuals. Virtual environment

training systems may range from large, complex systems like CAVEs (Cave Automatic

Virtual Environment) to Head Mounted Display (HMD) systems to single desktop PCs

utilizing videogame technology. Regardless of the type of system implemented, a virtual

environment training system must meet both the task requirements of the trainer and the

educational needs of the trainee.

A. SOUND IN VIRTUAL ENVIRONMENTS
The design of virtual environment training systems should start with task analyses

describing the fidelity and types of sensory cues necessary in the virtual environment to

provide a positive training transfer to the real-world task. Most training systems do not

require modeling every sensory cue. For example, a virtual environment training system

designed for part-task navigation training may not require any audio or haptic cues.

Visual displays and cues may be all that is necessary to provide a trainee with enough

fidelity to make the part-task training viable and effective. Conversely, an aircraft

simulator or Close Quarters Battle (CQB) virtual environment may require

implementation of all available sensory cues to be effective and provide a positive

transfer of training. The presence of multi-sensory cues in these virtual environment

training systems may be necessary to provide the user with a sense of presence and

immersion in the virtual world.

Many task analyses do not adequately determine which auditory cues are

necessary to create the appropriate level of immersion and sense of presence. More often

than not, the absence of an auditory cue will be far more noticeable to a participant in a

1

virtual environment than its presence. A specific type of task analysis, called an Auditory

Task Analysis may be required for complex tasks such as CQB to determine the exact

nature and types of auditory cues that induce presence. Significant research is ongoing at

the Naval Postgraduate School in several areas relating to the relationship between

auditory cues and the sense of presence. Studies examining physiological manifestations

relating to presence, auditory cue effects on memory and retention, and a CQB auditory

task analysis all relate to the larger issue of providing the most immersive virtual

environment possible. For a virtual environment training system to be truly effective, a

thorough task analysis, including an auditory task analysis, will confirm whether auditory

cues are necessary. For those training systems that a task analysis indicates audio cues

are necessary, critical design attention must be given to the type and quality of the

auditory cues and the design and implementation of the audio architecture created to

deliver those cues.

While system developers have long understood the necessary linkage between

display graphics fidelity and the level of immersion, auditory fidelity has not been a

principle focus in immersion research or system design. Many virtual environments have

been designed and constructed with no thought at all to the implementation of an audio

delivery system or audio design principles. We contend that failing to address the audio

component of a virtual environment may result in a far less effective training device.

B. RESEARCH OBJECTIVE
The principle objective of this research was to design and implement a fully

immersive audio architecture that could be incorporated into any training system. To be

fully immersive, the audio architecture must provide:

• Spatialized sound. Spatialized sound refers to sounds emanating from
point sources surrounding the listener. This is how sounds occur in the
real world. If a virtual environment is to mimic the real world for a given
task, sounds related to that task must appear as they do in the real world.
Spatialized sound may be implemented with a multi-speaker system such
as 5.1 surround, or it may be implemented with a headphone-based spatial
audio system that provides both elevation and azimuth cues.

• Modeling of acoustic properties in the environment. Acoustics is a term
used to describe audio effects that occur in the real world in a given

2

situation. For example, sounds inside a room reverberate and reflect
around the listener. Depending on the material properties of the room, the
effects may be more or less pronounced. The audio architecture used in
virtual environments must be capable of mimicking those effects.

• Live voice. Many virtual environment training systems are designed to
support multiple participants or teams. Verbal communication between
participants or team members may be a critical element to task and
mission success. The audio architecture must support live voice between
participants or team members. Latency considerations must be taken into
account in the transmission of the live voice signal. If the latency in
transmission becomes too great, voice communications will not only be
ineffective, but also interfere with the training being conducted. While
live voice may not be included in every training system, the architecture
must be capable of supporting verbal communications for those
applications where it is necessary.

• The ability to create a highly detailed auditory environment. The
entertainment industry has long recognized the importance of properly
designing sound effects and sound systems to add realism, emotion, and a
sense of immersion to film and to video games. The first rule of sound
design is, “see a sound, hear a sound.” (Yewdall, 1999) The audio
element, which is probably the most important aspect of evoking the sense
of immersion in a VE, is ambient sound. If the appropriate background
sounds (machinery, artillery, animals, footsteps, etc) are not included in
the virtual environment, the participant will likely feel detached from the
action.

The motivation for this research was personal. As a military aviator with

seventeen years of experience, the author has been exposed to numerous simulators,

virtual environments and training systems that incorporated substandard audio designs

and implementations. Each of these systems failed, in varying degrees, to provide an

optimum training environment due to a lack of attention to the critical audio component

of their systems. Each of these training systems could have easily been improved if an

appropriate audio architecture had been incorporated.

Prior to the implementation of our audio architecture, criteria were established for

reviewing existing architectures and guide design decisions:

• Commercial-of-the-shelf (COTS) technology. To the greatest extent
practicable, the audio architecture should utilize COTS products, both
hardware and software. Using COTS technology not only reduces cost of
design and implementation, but in many circumstances, COTS technology
enjoys industry technical and maintenance support.

3

• Cost. Cost of the architecture should be minimized when possible by
using public-domain software, open-source development APIs, free
commercial software development kits, and existing audio hardware.

• PC-based. Most virtual environment training systems under development
today will be delivered on PCs. The audio architecture must be able to
work within the confines of a standard PC or, if necessary, add a limited
amount of hardware to the overall footprint of the training system. Most
military virtual environment training systems are being designed to be
deployable onboard ships. The audio architecture and system size must
not negatively impact deployability.

The second objective of this research was to compare Voice over Internet

Protocol (VoIP) technologies with high-end audio systems capable of live streaming

voice. VoIP utilizes an encoding-decoding compression algorithm over a standard

network connection to provide live streaming voice for any application. Since VoIP uses

network connections, network latency and compression latency can vary widely and

impact the effectiveness of the live voice component of the audio architecture. Hardware

implementations for live voice may overcome the network limitations of VoIP, but may

add considerable size to the footprint of the audio architecture, limit the dispersion of the

participants in the virtual environment, and increase the cost of the overall audio delivery

system. Finally, comparisons were made to evaluate the quality and latency in voice

transmissions using VoIP versus an alternative hardware implementation for live voice.

C. THESIS ORGANIZATION
This thesis is organized into the following chapters:

• Chapter I: Introduction. This chapter provides an overall outline of this
thesis and describes the research objectives and motivation behind this
research

• Chapter II: Background. This chapter reviews existing research into
spatialized hearing, sound and emotion, sound design in the entertainment
industry, and Voice over Internet Protocol (VoIP) technologies.

• Chapter III: Architecture Design. This chapter reviews current audio
software and hardware architectures.

• Chapter IV: Implementation. This chapter describes in detail an audio
architecture and implementation for virtual environments using a
combination of open-source application program interfaces (API) and
high-end, commercial-off-the-shelf (COTS) audio systems.

4

• Chapter V: Voice Latency Analysis. This chapter describes an experiment
to determine latency in voice transmissions between VoIP and high-end
audio systems.

• Chapter VI: Conclusions and Recommendations. This chapter provides a
recommended audio architecture and future work in improving the
software and hardware potions of this architecture

• Appendices:

 A. GFAUDIO Documentation

 B. GFAUDIO Source Code

 C. AUSERVERLIB Documentation

 D. AUSERVERLIB Source Code

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

II. BACKGROUND

A. SPATIAL HEARING AND SOUND
Spatialized sound in a virtual environment involves “virtualizing” the location of

a sound source relative to the listener, manipulating it so that it seems it to be emanating

from the desire location. This is accomplished by controlling two factors, the direction

from which the sound is coming, and the perceived distance from the sound source

(Figure 1).

Figure 1. Taxonomy of Spatial Manipulation (From the Operator’s Perspective), or of

Spatial Hearing (From the Listener’s Perspective). (Begault, 1994).

There are two primary methods the brain uses to determine location and direction

of sound sources in our environment. For sources at low frequencies (generally below

2Khz) interaural time difference (ITD) is a method by which the brain uses time of

arrival differences between the two ears to discriminate direction of the source. Sounds

directly in front of the listener arrive at the ears at roughly the same time, while sound

waves from sources to the left and right of the listener at different intervals. At higher

frequencies, the brain uses interaural intensity (IID) differences to discriminate between

sound sources. Many factors play a role in interaural intensity differences: head size,

pinnae size and shape, body shape, etc. In general, the brain can discriminate source

location by internally recognizing the intensity differences as the sound wave arrives at

the ears. Together, interaural time differences and interaural intensity differences provide

7

the basis for our ability to discriminate source location. Of note, our auditory system

does not possess the accuracy of our visual system - the visuals system is capable of

discriminating approximately 1 arc minute of difference, while our auditory system is at

best only capable of discriminating approximately one degree (Blauert, 1974).

Unlike the visual system, which is always centered on the field of view, the

auditory system is continuously functioning in three dimensions. Our accuracy of

discrimination varies in both the horizontal and vertical dimensions. On the horizontal

plane, we are most accurate at discriminating source locations directly forward or behind

where the listener's head is facing. Accuracy degrades as the source location is moved

away from the central axis of the head. In the vertical plane around the head, sound

sources are symmetric with respect to interaural time difference and interaural intensity

differences, and are thus much more difficult to discriminate location. Blauert combines

both of these concepts into a phenomenon called “localization blur” (Blauert, 1974). In

using interaural time differences and interaural intensity differences at the primary

discrimination techniques, our brains can be relatively easily fooled into thinking sounds

emanate from incorrect source locations (Figure 2).

Figure 2. Reversal Error and Localization Error (Blur). (Begault, 1994).

For example, a source on the horizontal plane at 45 degrees relative to central axis

of the head would present the same interaural intensity difference and interaural time

difference as a source 135 degrees relative to the central axis of the head. When this

arises, the primary way we attempt to discriminate these two sources is to use head

movements to change the relative positioning of the sound source. Even minor one-

degree head directional changes can produce the ITD's and IID's necessary to

discriminate direction.

8

In virtual environments using loudspeakers, the speakers act as the sound sources.

The fidelity of spatialization is dependent on the number and location of the speakers in

the environment. With as few as two speakers, virtual sound sources can be created over

a wide field around the participant, albeit not completely surrounding the listener. Most

speaker systems are designed to exist in the horizontal plane around the listener. It is

difficult to present sound sources possessing elevation either above or below the listener.

Obviously, more speakers create more sound sources, and if the elevation of the speakers

is adjusted properly, elevation in virtual sound sources can be achieved. To achieve

elevation cues, separate audio channels and speakers would be necessary for each sound

source to be presented. For example, sounds virtually positioned above the listener

would only play through a speaker system elevated above the physical location of the

listener. In an immersive audio environment with many sources, this is not feasible. In

general, elevation is not considered in the design of virtual environment audio systems.

With headphones, sound sources can be spatialized in three dimensions using

filters incorporating Head Related Transfer Functions (HRTFs). HRTF’s are complex

filter sets that capture the filtering properties of the pinnae including IIDs and ITDs.

Several commercial applications have been developed to permit collection of HRTF data,

including the Ausim3D HeadZap HRTF collection system. The HRTF is collected by

measuring the IID and ITD of a sound source that is sequentially positioning around the

head, using Fourier transforms to build a set of equations that act as a filter to any sound

source prior to presentation (Begault and Wenzel, 1993). Once calculated, this filter,

which is frequency dependent, can be applied to all sound sources delivered over

headphones, providing a fully spatialized, three-dimensional auditory environment.

9

Our auditory system is far less capable than our visual system in terms of

positional discrimination, given a constant audio signal. A virtual environment auditory

display does not require exact sound source positioning. The tradeoff between

processing efficiency and sound source positioning should be weighed carefully. The

auditory display must permit the user to use head movements to discriminate source

locations. This is automatic in a virtual environment using loudspeakers. In a virtual

environment using headphones, the participant must be head-tracked to permit natural

head movements to aid in sound source position discrimination.

For virtual environments using loudspeakers, the concept of the “sweet spot” is a

critical design issue. The sweet spot is the place between the speakers where all of the

speaker channels combine to create the desired special sound effect. A person positioned

in the “sweet spot” is going to benefit from much richer and generally better sounding

audio. The “sweet spot” for a two-speaker setup is the mid-point of the line drawn

between the two speakers. Additionally, the speakers should be aimed directly at the

head. For surround sound systems, the “sweet spot” is the point where the diagonals

cross from opposite satellite speakers. The placement of the subwoofer is not critical -

the human ear cannot distinguish the direction of the lower frequencies associated with

subwoofers.

B. SOUND AND EMOTION

1. Linking Performance with Optimum Stress or Arousal
A large body of research has been conducted into how humans react to stress.

Stress, and most importantly an increase in stress, can be caused by external stimuli, such

as noise, temperature change, or time pressure for task completion. Stress can also result

from internal psychological factors, such as anxiety, fatigue, frustration, and anger.

According to Wickens (1999), stress takes on three manifestations:

• Stress produces a phenomenological experience and often an emotional
one. The individual subjected to the stress notices a feeling of frustration
or arousal.

• Often, a change in physiology is observed, such as a change in heart rate
or blood pressure. This affect may by of limited duration or long-term,
sustained affect.

• Stressors affect the characteristics of information processing. The
assumption is that the affect is degradation in information processing
capability for the person subjected to the stress, but this is not always the
case.

An easy way to measure the effect of stressors in the environment is through

physiological measurements, such as heart rate, blood pressure, pupil dilation, and other

activities of the central nervous system. Each of these can describe one’s level of

arousal. Different types of stressors can either increase or decrease the level of arousal.

Stressors such as anxiety, pressure from superiors, noise (a form of audio) generally
10

increase one’s level of arousal while stressors like fatigue will decrease the level of

arousal. The Yerkes Dodson Law (Yerkes & Dodson, 1908) characterized the

relationship between arousal and performance as seen in Figure 3.

Figure 3. Yerkes Dodson Law. (Wickens, 1999).

As arousal increases towards the optimum level, performance increases.

However, once a critical stress threshold is reached, performance will start to degrade.

Since stressors can affect the level or arousal, stressors can affect the level of

performance. In virtual environments, we have control over many stressors placed on

participants, including the fidelity of the information provided the to virtual environment

participant. Many stressors will be uncontrollable by the designers of the virtual

environment, such as the participant’s level of anxiety, pressure by superiors, and other

factors in the participant’s life. However, for those stressors we can control, we can

affect changes in the participant’s level of arousal and thus the level of performance. The

inclusion of audio in a virtual environment is one stressor that we can control. Proper

audio design and implementation in a virtual environment can provide a method to

increase the level of arousal and thus the level of performance while in the virtual

environment.

2. Linking Arousal with Audio
Research at the Naval Postgraduate School was recently conducted investigating

how physiological indicators could be used as a measure of presence in a virtual

environment (Scorgie and Sanders, 2002). Subjects were asked to participate in a first-

11

person shooter video game. The subjects were divided into audio treatment groups as

follows:

• Control: No audio presented to subjects

• Treatment 1: Only headphone audio presented to subjects

• Treatment 2: Only loudspeaker audio presented to subjects

• Treatment 3 - headphone and subwoofer speaker audio

The physiological data that was measured included heart rate, blood volume pump

(BVP), galvanic skin response, and temperature.

While the intent of the experiment was to determine whether physiological

markers or indicators could be used as a measure of the sense of presence, the data can be

used to support the link between arousal or stress and audio for this paper. Electro

dermal activity, heart rate and blood pressure all increased with the inclusion of audio in

the virtual environment, indicating increased arousal. Body temperature decreased with

the inclusion of audio; this is to be expected - the body withdraws blood from the

extremities and sends more to the vital organs during higher states of arousal, normally

associated with a “fight or flight” syndrome. All effects were found to be statistically

significant. The results of the experiment indicate that the addition of audio, in whatever

form (treatment group), raised certain physiological measures, all of which can be

directly related to one’s level of arousal.

C. SOUND AND TRAINING

1. Linking Audio with Performance

Performance is linked to an optimum level of stress or arousal one is subjected to

in his environment. It has been shown that the inclusion of audio in an environment can

raise or affect the stress or arousal level of a person in that environment, whether it is the

real world or a virtual environment. A transitive link therefore can be established

between performance and audio. The presence of audio cues can raise the arousal levels

of participants. If the arousal level of the individual can be elevated to the optimum

level, performance will improve. It stands to reason, therefore, that including audio cues

appropriately should improve performance. To this point, performance has not been
12

linked to any task or environment. The next three sections will further examine the affect

on performance in the context of a training environment. This is not exclusive to virtual

environments - it applies to real-world training environments as well. However, if the

link is established between audio and training performance in any environment, at stands

to reason that it will apply also in virtual environments. This is the key to linking audio

cues that may not be evident as necessary in a task analysis into a requirements

specification of a training system.

2. Linking Performance with Memory, Expertise and Training

Wickens and Holland (1999) divide memory into two main categories - working

memory and long-term memory. Working memory is the short-term storage capacity

where we temporarily store, analyze, transform and compare data. Long-term memory is

where information is stored for later retrieval and use. It is practically, if not

scientifically, considered to be of infinite storage capacity. Wickens suggests there are

five characteristics of how we learn, only two of which will be covered here. First, there

is am emphasis on instances or situations. We generally learn through specific examples

or situations and then generalize to others. This theory is supported by Brown, Collins

and Duguid (1989) in their paper on Situated Cognition. Their research indicates that

humans learn best is the context of where the learned material or subject matter can be

used. They coin the phrase “cognitive apprenticeship”; learning through doing in a

specific situation is far more effective than learning in an abstract, classroom

environment without tangible examples. The second characteristic of learning is that we

use chunking, or grouping of associated individual pieces of data into larger single units

for easier recall and access.

Posner (1983) and Chi, Glaser, and Farr (1998) suggest that the defining

characteristic of expertise is exceptional feats of memory, both in chunking strategies and

recall. Training systems, including virtual environments, are created to improve

performance in a given task, hopefully to the level that of an expert. If expertise is

gained through repetitive practice, elaborative rehearsal and exposure to multiple

experiences in a domain, a properly constructed training system will afford trainees the

13

requisite experiences to gain that expertise. Does the inclusion of audio assist the trainee

in the acquisition of domain knowledge, skills, and improved memory?

Dinh, Walker, Song, Kobayashi, and Hodges (1999) conducted an experiment to

determine if the presence of multi-sensory inputs in a virtual environment had any impact

on the user’s level of presence and memory retention for objects and events in that

environment. They found that the addition of sensory inputs, other than the standard

visual modality provided with most virtual environments, significantly increased the

user’s level of presence in the virtual environment. In basic terms, an increase in the

level of presence was found for each type of sensory input added - tactile, audio, and

olfactory. Each had an additive effect on the level of presence. Their study supports the

contention that the addition of audio increases the sense of presence. Furthermore, the

results of their study indicate that memory of objects and events in the virtual

environment improved as additional sensory inputs were provided to the user. A virtual

environment that uses a single modality, such as a visual display, is inferior to one that

incorporates multi-sensory information, including auditory, tactile and olfactory cues.

Admittedly, not every task requires multi-sensory cues, and not every virtual

environment training system will be capable of multi-sensory cueing information.

However, their study further justifies conducting thorough task analyses to determine

whether the presence of multi-sensory cues is appropriate. When task analyses indicate

that audio cues are necessary for a particular task, inclusion of these audio cues in the

virtual environment should, theoretically, improve memory, develop increased expertise

in the specific domain, and improve task performance.

The two previous paragraphs transitively link audio in an environment to an

increase and improvement in performance. First, audio was linked with an increase in

arousal. Then, an increase in arousal was linked with an increase in performance. This

link suggests that proper audio design and implementation can improver performance in

virtual environments.

14

3. Selected Task Analyses

This section will examine several task analyses developed to provide the

foundation for virtual training environments. Each is assessed for the following:

• Tasks analysis requirement(s) for audio cues

• Whether those audio cues are could be included in the virtual training
environment

• The possible benefit of including audio and audio cues in the virtual
environment

Grassi (2000) conducted a task analysis of pier side ship handling as a

development tool to construct a virtual environment pier side ship-handling simulator. In

the critical cue inventory for determining whether a ship’s engines have properly started

and are online, a critical cue for the conning officer is the sound the conning officer will

hear as the ship’s engines start up (Figure 4). During a conning officer’s assessment of

environmental conditions and surrounding environment, auditory clues provided by

ship’s pennants flapping in the wind provide the conning officer with an estimation of

wind speed and direction.

Figure 4. Example of Critical Cue Inventory for Pier Side Ship Handling -

Verify_Engines_Are_Started_And_Online. (Grassi, 2000).

Numerous references are made to the conning officer checking rope lines for

taught or slack conditions in many of the individual task elements. The sound of a line

stretching to near breaking point is a well-known auditory cue of a line being too taught.

As orders are given by the conning officer to maneuver the ship, especially those

involving changes in engine state or RPM, answering bells provide the officer with an

15

auditory cue as to order compliance. Each of these is listed as a critical cue. If a virtual

environment simulator for ship handling ignores these critical cues, potentially degraded

training in pier side ship handling will result. Conning officers trained in pier side ship-

handling in the virtual environment will not gain the experience of using those critical

auditory cues in actual ship-handling in the real world.

Similarly, Norris (2000) refers to specific audio cues in his task analysis of

underway replenishment ship handling. Like Grassi, he finds engine sounds as critical

audio cues in determining whether verbal orders for maneuvering and speed changes

have been carried out. During underway replenishment, the bridge of a ship is a host to

many activities, many of which are driven by verbal commands. Verbal communication

is critical to every phase of underway replenishment (Figure 5). Verbal interaction

between the Commanding Officer, conning officer, Helm, and Navigator is constant and

precise - each monitors the communication between all of the other players in an

underway replenishment situation.

 . . . goal: Receive_Approach_Order_From_CO
 [select: Receive_Verbal_Order_From_CO_To_Commence_Approach
Receive_Verbal_Order_Via_XO_To_Commence_Approach
Receive_Verbal_Order_Via_OOD_To_Commence_Approach]

. . . . goal: Acknowledge_Receiving_Order

Figure 5. Example of Underway Replenishment Verbal Audio Cues. (Norris, 2000).

Norris’ task analysis is replete with critical verbal cues between all participating

watch stations. A virtual environment simulator modeling underway replenishment that

did not include verbal communication would be severely limited.

Both example task analyses indicate that specific audio cues are necessary to

complete the task successfully. Both scenarios could be incorporated into virtual

environments without any audio at all. Text messaging could be a possible substitute for

voice audio and ship’s engine noises could simply not be included. However, the task

analysis suggests that these cues are critical to the success of the evolution. Ignoring

critical cues degrades the quality of the simulator and training. Couple the “critical-ness”

of the cues with findings that multi-sensory cues in virtual environments add in memory

16

retention of objects and events, inclusion of audio in the virtual environment simulator is

seen as not only beneficial, but necessary.

4. Summary
A transitive link has been established between the inclusion of audio in virtual

environments with a benefit to both training and performance. This link has not been

established to be causative or direct, but instead built upon existing research into

memory, arousal, expertise, training and learning. Further study is warranted, and

transfer-of-training experiments should be conducted to determine if there is an actual

cause-effect relationship between virtual environment audio and training performance.

However, given the relationships described above, virtual environment developers and

designers should pay significant attention to the audio design and implementation of their

systems. Ignoring the link between audio implementation and training performance can

result in degraded training performance and the ultimate validity of the training system.

As a result, degraded training will affect operational performance. In the military, where

the skills being trained may be of a life or death nature, operational performance is of

utmost importance.

D. VOICE OVER IP (VOIP) TECHNOLOGY
VoIP is the transportation of speech signals in an acceptable method from sender

to destination over an Internet network. The speech signal is digitized pieces of voice

conversation sampled at regular intervals. These samples are sent via the network to the

desired destination where they are reconstructed into an analog signal representing the

original voice. In a networked virtual environment, VoIP offers a technology to permit

live voice between large numbers of networked participants. In the military, many virtual

environments simulate training scenarios involving multiple team members working

together to complete a mission or a task. If the “real world” task or mission is

accomplished through voice communications, using text-based messaging for live voice

communications will be cumbersome and unnatural and will degrade the realism of the

training system.

17

Using an Internet protocol (IP) network requires the utilization of an IP protocol

for transmitting the information. IP networks are sometimes referred to as “packet”

networks, for they communicate through the sending and receiving of data packets with

known formats. Two standard protocols, TCP/IP and UDP are the most widely used

protocols used today. All Internet Service Providers (ISP) support TCP/IP. Everyone

with a home dial-up Internet account, home Digital Subscriber Line (DSL) account or

home cable modem Internet account uses TCP/IP for communications with the Internet.

TCP/IP refers to the format of data that is transmitted over the network and the rules in

force for ensuring delivery at the desired location. TCP/IP is considered to be “reliable” -

reliable means that each individual packet that is sent over the network is verified at the

receiver and acknowledged. If the data is larger than a single packet, it would be broken

down into several individual packets and each transmitted separately. Packets are

reassembled in the proper order at the destination prior to delivery to the client’s

application. TCP/IP guarantees that packets will be reconstructed at the receiver in

proper order. Reconstruction in the proper order is of vital importance to a voice signal.

Out of order or lost packets will significantly degrade the quality of the transmitted voice.

However, the processing overhead and delay for this guarantee will significantly increase

latency in transmission and reconstruction of the voice signals.

UDP is the second-most widely used IP protocol in use. Unlike TCP/IP, UDP is

unreliable. The UDP protocol does not contain the stringent requirement to acknowledge

each individual packet. Packets are transmitted from the sender and essentially forgotten.

While this reduces the overhead and delay in processing, packets can arrive out of order

or be dropped from reception completely. Both of these protocols use an IP network for

transmission. IP networks do not guarantee a specific path for delivery of packets

between sender and receiver. Each packet may take a different network path. For this

reason, UDP is generally considered unsatisfactory for live voice.

The latest IP protocol developed specifically for streaming audio and video over

the Internet is Real-Time Transfer Protocol (RTP). RTP imposes packet sequencing and

time stamping on a UDP data stream to ensure sequential packet reconstruction at the

receiver while not imposing the high processing overhead of reliable transmission.

18

The core components of a VoIP system for virtual environments will be slightly

different from that of a VoIP system designed for other purposes, such as an alternative to

a telephone. The primary difference will be the inclusion of spatialization processing for

the transmitted voice signal. This section will not address spatialization of VoIP; refer to

Chapters III and IV for specifics on how spatialization is incorporated into VoIP. The

entire process of the core VoIP system is depicted in Figure 6. The arrows that point

downward define the path that is followed when sending speech signals; the arrows that

point upward define the processing sequence when speech signals are received. When

the label of a box contains two items, the left one is refers to the sending of speech

signals and the right refers to the reception of such signals. They are grouped together

because they operate at the same level: the right item does approximately the opposite of

the left one.

In order to send a live voice across a computer network, the speech signal has to

be digitized prior to transmission. In most VoIP applications, the PC sound card

performs the sampling of the speech signal and conversion to digital information.

Figure 6. VoIP Components.

When a digitized block is received, it has to be transformed back into an audio

signal. Like the sampling and digitization for transmission, the transformation is

accomplished by the receiver’s PC sound card. The output of the process is played either
19

through speakers or headphones for the listener. In essence, reconstruction is the reverse

operation of sampling.

Several issues have to be considered before transforming the digitized signal.

First, if multiple persons are allowed to talk at the same time, as would be the case in

many virtual environment training systems, the speech signals of those persons have to

mix together at the receiver. The mixing is also done on the receiver’s PC sound card.

Second, when sending blocks of data across a network, there will be tiny

variations in the time it takes each block to get to the destination; unfortunately, these

variations can become quite large. The path each packet takes over the network from

sender to receiver is not controlled by either (assuming an Internet connection between

sender and receiver). There is a large body of research into packet flow over distributed

networks, which will not be a focus of this investigation. It suffices to say that once a

packet leaves the sender, control over its path to the receiver and the time it takes to

arrive at the receiver, is uncontrollable. The only way to control network flow is to

control the entire network. In the case of the Internet, this is impossible. In military

training systems, this may actually be possible, if the networked simulation is over an IP-

based network detached from the Internet. The problem with variation can be seen in the

following example. Suppose the voice signal is reconstructed in the exact sequence the

voice packets are received. Because of the variation in arrival time due to uncontrollable

network pathing, it is possible that either the next block has not yet arrived when the

output of the first one is finished or the blocks arrive out of sequence. To overcome this,

the reconstruction scheme purposely creates a delay to allow received packets to

accumulate. The accumulated packets can be re-sequenced not in the order of arrival, but

in the order of transmission. However, buffering introduces a significant delay in the

presentation of the voice signal.

Further complicating the matter, the digitized information requires a certain

amount of the available bandwidth of the connection. Sampling and reconstructing the

speech signal at an extremely high rate is possible, especially with the advances in

computing technology of recent years. However, higher sampling rates have a tendency

to flood the network connection with data packets. Every network suffers from some

20

limitation in bandwidth. Simply increasing the sampling rate will not necessarily reduce

latency and can other detrimental effects on network performance. In a networked virtual

environment the voice signal is not likely to be the only data transmitted over the

network. Environment state data, participant actions and controlling information must

continually be sent to maintain a shared state between the separate virtual environment

users. All network traffic, including the voice data, must share the bandwidth of the

connection.

Very often compression schemes are used to reduce the required bandwidth for

voice communication. Compression refers to encoding the information with an algorithm

that reduces the raw data into smaller pieces. Several types of compression strategies

exist. Some use compression techniques, which are also used on other kinds of data.

Others are designed specifically for streaming media over the Internet. These types of

compression significantly reduce the amount of data that must be transmitted. However,

the more intricate and processor-intensive the algorithm used for compression, the greater

the delay in transmission of the original voice signal.

Once the compressed blocks with speech data reach the destination, they have to

be decompressed. The decompression is very closely related to compression. It is the

inverse operation of the compression scheme that was used. Compression and

decompression are very important when the network connection is slow, as with dial-up

connections to the Internet.

Up to this point, transmission of voice packets has been presented in the form of a

single sender and single receiver. In virtual environments, many training scenarios will

involve many more than two participants. A growing bandwidth problem is created if the

sender must individually transmit voice data to all other participants, especially if the

number of participants is large. As the number of participants grows, an exponential

number of paths between participants present itself for transmitting the voice information

blocks. Statistically, this is referred to as an O(n2) problem. Multicasting is IP-based

protocol where individual machines (users) subscribe to an IP address as if that address

where another user. Individual users transmit and receiver from the multicast address.

The difference in this scheme is that each user receives all data transmitted to the

21

multicast address. This permits a single transmission of the voice signal and

simultaneous reception by all users. Multicasting promises to improve streaming media

over the Internet by reducing the number of messages sent to large numbers of

subscribers. However, multicasting requires modifications to hardware at all of the

switches and routers within then network path. Changes that would permit multicasting

over the Internet have not taken place. Small-scale networks, where control and access to

the network hardware is possible, offer the only currently available option for multicast

use.

E. LIVE VOICE IN VIRTUAL ENVIRONMENTS

In “Adding Voice to Distributed Games on the Internet”, Bolot and Fosse-Parisis

(1998) explore several of the issues in adding a spatialized live voice capability to a

distributed virtual environment. There is evidence to suggest that this capability and

audio fidelity may be needed for positive training in certain complex applications, such as

Close Quarters Combat (Greenwald, 2002). Greenwald found that verbal

communications in three of four phases of CQB were evaluated as the highest priority

auditory cue necessary.

Echo is a major concern when two or more players join in a live voice session.

Echo occurs when each participant’s microphone collects not only their voice

transmission, but also the playback of the other participants. They analyzed the amount

of CPU utilization to implement echo suppression or canceling algorithms, and quickly

deduced that their system (a Pentium II 200 MHz) could easily be overwhelmed simply

running the computations to reduce echo. Their conclusion that the most effective, and

CPU inexpensive, method to reduce echo is to play back voice audio through

headphones. Although this study was conducted in 1998, and significant improvements

have been made in CPU processing power, this is still a valid recommendation. If live

voice is played over speakers, echo will always be an issue that must be dealt with. The

authors discuss two additional factors that must be taken into account if an accurate

spatialized live voice session is to be modeled. The first is the Doppler Effect, which

depends on the relative speed of the participants. The Doppler Effect refers to how sound

waves are affected when the source is in motion. As a source moves, its velocity affects
22

the speed at which sound waves arrive at a listener. If the source is moving towards the

listener, the sound waves are compressed relative to source velocity. The perceived

sound at the listener is that the frequency has shifted up from the original emitted

frequency. Conversely, as the source moves away from the listener, the sound waves are

rarefracted relative to source velocity. In this instance, the perceived frequency emitted

from the source appears to be shifted down in frequency. Although the original source

frequency is never altered, its velocity affects the listener’s perception. The amount of

frequency change is dependent on source velocity. A simple example of the Doppler

Effect is to listen to a train pass by. Initially, as the train approaches, the sound of its

whistle will appear higher in pitch, but fall lower as the train actually passes by the

listener’s position. The second is “transmitter directionality”, referring to whether or not

the speaker is facing you or turned away from you. Doppler effect need not be calculated

by the voice “sender”, if some underlying network capability allows for transmission of

other data as well. If this capability exists, transmission of data packets encoding the

player's velocity can be decoded and Doppler processing can be achieved at the receiver.

However, Doppler processing of live voice is generally not required. The velocity

required to perceive the pitch change associated with Doppler is much larger than a

person can move. Directionality of the voice, modeling the radiation pattern of the voice

of the speaker, requires significantly more sophistication. At a bare minimum, speaker

orientation and position must be included in network data from sender to receiver.

Although processing at the receiver increases to add the directional capability, the

inclusion of directivity as an attribute of live voice need not significantly increase

network traffic.

The authors raise the critical issue of synchronization and latency - ensuring that

the audio and visual presentations are synchronized to a level where the “tolerable de-

synchronization” level is not exceeded. Although the tolerable level of de-

synchronization is individual-dependent, their findings indicate that there is a generally

accepted interval of 185 ms or less, where the desynchronization and latency will be un-

noticeable to the user. The issue here is not overall latency in the networked virtual

environment. Any networked virtual environment will have some level of latency due to

network loading, network transmission path, and other IP-based network issues. The true

23

issue for live voice is ensuring that the latency in the live voice is no greater than the

average network latency inherently present in the system.

Architectural acoustics play a significant role in how live voice is presented in

virtual environments. The sound of the live voice should be different depending on the

virtual location of the speaker. For example, a voice associated with a participant

standing in the middle of a field should sound very different than the voice of a

participant standing in a tiled room. Reverberation and reflection quality of the

environment should affect the live voice in the same way if affects ambient sounds.

However, including or encoding that type of information into the voice data is extremely

difficult. As previously discussed, digitizing the voice signal is a time and CPU

expensive operation that induces latency. Adding more data, in this case not only the

voice but the acoustic effect as well, further burdens the digitization, compression,

decompression and reconstruction scheme. A superior implementation will incorporate

architectural acoustics in the same manner as voice directivity. Utilizing the network

connection established for the voice signal, simple attribute data packets can be sent from

speaker to listener to set required parameters on the listener’s machine to achieve the

requisite acoustical effect.

Does spatializing the live voice really have any benefit? Nelson, Bolia, Ericson

and McKinley (1999) conducted an experiment to determine whether spatializing speech

in a multi-talker environment aided in detection of a critical phrase. This was an

experiment to address the “cocktail party” effect (Yost, Dye and Sheft, 1996). The

“cocktail party” effect describes our ability to discriminate between multiple, on-going

conversations around us. This is especially applicable in several military applications,

such as the Close Quarters Combat (CQB) scenario, currently under development at the

Naval Postgraduate School. The author's intent was to examine the number of competing

signals that could effectively be discriminated, and also examine any differences between

free field and virtual environments. In their experiment, subjects were exposed to from

one to eight simultaneous speakers, either spatialized or non-spatialized (Figure 7), and

speakers were of both genders.

24

Figure 7. Comparison of Non-Spatially Separated (Left) and Spatially Separated (Right)

Audio Conditions. (Nelson, Bolia, Ericson, and McKinley, 1999).

The researchers collected data on detection of a critical signal and identification

of additional information that would emanate from the same source position as the target

signal. Spatialization had a significant effect on the identification of the signal. The

results suggest that our ability to search an auditory environment for cues is significantly

improved when those auditory signals are spatialized. However, their study found no

advantage when spatializing the speaker’s voices when there were more than six talkers.

For their study, spatializing voice is most effectively when there are between two and six

talkers. Other studies have suggested that the limit on the number of spatialized signals

that can be identified is much higher. Regardless, spatialization significantly improves

signal detection over non-spatialized signals.

Campbell (2002) conducted an experiment to determine whether spatializing

messages in a headphone display would improve recognition and response. He found

that a listener could accurately respond to spatialized, overlapping messages 47% of the

time. When the overlapping messages where not spatialized, listeners could only respond

accurately 17% of the time. By spatializing multiple messages, his results indicate a 30%

improvement in the listener’s ability to discern overlapping messages. Thus, spatializing

live voice in a virtual environment can be beneficial. A virtual training system designed

to immerse a participant in a military situation where detection of live voice information

is critical is definitely a candidate for spatialized live voice.

Nelson’s investigation of spatialized speech signals was primarily based on

azimuth separation. Brungart and Simpson (2001) investigated the ability to separate

25

speech signals when spatialized by distance from the listener in the both the near field

(defined as within one meter of the listener) and far field (greater than one meter). In the

far field, interaural intensity difference is negligible, since the distance between ears is

relatively small compared to the distance between the ears and the sound source. Like

Nelson, Brungart and Simpson tested subjects on their ability to discriminate signals and

indicate the reception of a target speech signal. The target signal was masked with either

random noise or other speech signals. With simple noise, the brain essentially

accomplished the discrimination between the two primarily by using Signal to Noise

Ration (SNR). The authors call this as energetic masking. When the masking signal is

speech, the brain made better use of the binaural cues in discrimination. The authors

refer to this as informational masking. Depth of both the target and masking signal was

varied, but limited to one meter. Again, this provides a strong argument that if live voice

is to be added to a virtual environment training system, spatializing the live voice

enhances the user’s ability to discern voice information coming from different positions.

These two experiments indicate that spatially separating voices, either by angular

separate or distance separation, can improve voice audio discrimination among multiple

sources. As previously mentioned, a primary scenario where spatialized VoIP could be

employed would be a virtual CQB exercise. In typical room clearing CQB environments,

small groups of individuals move in teams through a building. Teams may have contact

with each other, and within a team members remain in close proximity. Accurately

representing the speech signals through acoustic spatialization in a virtual environment

would support training for CQB by creating the same voice audio effects as those found

in the real world.

26

Perhaps the most important indicator of whether spatialized voice has any benefit

in a virtual environment is whether or not the participants in that environment feel it

increases, decreases or has no effect on their awareness of that environment. Baldis

(2001) conducted a study of the effects of spatialized voice on participants in a

teleconference. In her study, three configurations for used: non-spatial voice audio, co-

located spatialized voice audio (each conference participant's voice audio was played

through a single speaker mounted on top of the monitor and all speakers were placed near

each other and adjacent to visual images of the conference participants) and scaled-

spatialized voice audio (individual speakers for each of the conference participants placed

in a semi-circle around the subject at -60, -20, 20, and 60 degrees relative). Data was

collected through the use of tests (memory and comprehension) and post-conference

questionnaires. For both the co-located and scaled-spatialized conditions, analyses of the

findings indicated that subjects were better able to focus on who was speaking and

comprehend the content of what was said. Regardless of the visual presentation, the

subjects indicated a clear preference for the spatialized voice audio.

F. ARCHITECTURAL ACOUSTICS

Acoustic modeling is important for design and simulation of three-dimensional

auditory environments. The primary challenge in acoustic modeling is computation of

the myriad paths from a sound's source position to a listener's receiving position. A

sound may travel from source to listener via a direct path, a reflected path, or a diffracted

path. In the real world, sound seldom travels from source to listener along only one of

these paths. A sound arriving at our ears generally follows many paths that

constructively and destructively interfere with one another to create the sounds we hear.

For example, an omni-directional sound in a room arrives at the listener via theoretically

an unlimited number of paths. While there is only one direct path from source to listener,

the number of reflected paths can be huge. The sound can reflect numerous times

between wall surfaces before it arrives at the listener. Objects in the room can diffract

the sound, creating new paths of reflection. To accurately model architectural acoustics

of a room is very difficult and processor expensive. Add to that the fact that most rooms

are not simple cubes but multi-faceted enclosures and the problem of accurate acoustics

become almost impossible.

There are three general methods employed to integrating architectural acoustics in

virtual environment. The first involves pre-computation of acoustic modeling prior to

runtime. Reflections and diffractions are computed for every source and listener position

possible in the virtual environment and the results can be applied at runtime for a

dynamic auditory environment. The second involves auditory ray tracing techniques

similar to ray tracing in the visual sense. Large numbers of sound rays are traced from

source to listener, sound energies are calculated for transmission path length, and the
27

result is available at runtime. Neither of these methods is truly interactive, since they

both require pre-computations of the acoustic model. The quality of the acoustic model

is directly related to the amount of processing allotted prior to runtime

A third solution to providing architectural acoustics is numerical modeling. In

numerical modeling, the acoustic effect is obtained not by actual mathematical

computations in complex algorithms, but instead based on numerical input to software

algorithms that process the sound for a desired effect. There is not in relation to the

environment. The effect obtained is a result of numerical input to the effect algorithm.

Where do the numerical inputs come from? In the gaming and entertainment industry,

the numerical inputs are the result of programmer and audio engineer trial and error.

Numerical inputs are varied and modified until the desired effect is obtained. In other

words, “work the numbers until it sounds right.” While it seems like this methodology

might be haphazard, it is the technique most gaming companies have incorporated into

the sound design. It is also the basis for how this architecture will attack the problem of

acoustic modeling.

28

III. CURRENT ARCHITECTURE DESIGNS

A. INTRODUCTION
This chapter examines three software application programming interfaces (API)

and one high-end hardware architecture implementation. The APIs reviewed are all

either open-source, public domain (GNU Public License) or part of free Software

Development Kits offered by their respective development companies.

B. OPEN AUDIO LIBRARY (OPENAL)
OpenAL is a cross-platform audio API designed to provide a software developer

with a simple, easy to use interface to spatialized audio (available at either

http://www.openal.org or http://developer.creative.com). The primary force behind the

development of OpenAL is Creative Technology, Ltd. Creative Technology, a company

based in Singapore, is a global leader in PC entertainment and audio products. Best

known for its SoundBlaster and Audigy line of PC sound cards, Creative Technology

has entered into many joint ventures with PC gaming companies, including Epic Games

Inc., a partner in the Naval Postgraduate School’s America’s Army project. Creative uses

OpenAL as their primary audio programming interface for Win32, UNIX, and Linux

platforms (Creative does not currently support Mac OS X and provides only minimal

support for Mac OS 9 and earlier).

OpenAL is a platform-independent “wrapper” API for operating system on which

it operates. For example, on a win32 platform, OpenAL accesses the DirectSound3D

or DirectSound3D driver. Platform operating system discovery is automatic in

OpenAL.

A few of OpenAL’s capabilities include:

• Audio Contexts - a context in OpenAL can best be described as an audio
“situation” - an environment consisting of a listener and sounds. OpenAL,
like all audio programming API’s only support one context per machine,
except in those circumstances where a single computer contains multiple
sound cards. In those cases, multiple contexts can be implemented for
each sound card.

29

• Spatialized Audio - OpenAL supports one listener per context, and as
many sounds as the host machine memory will support. OpenAL will
generally manage whether sounds are processed on the sound card (in
hardware) or on the host CPU (in software) automatically. The priority is
to utilize hardware assets (buffers) first, followed by software. Most
sound cards support between 16 and 64 hardware-processed,
simultaneously playing sounds. Spatialization of audio is accomplished
by constructing buffers of sound data - OpenAL currently supports
multiple audio formats, including PCM wave files and MP3 formatted
data. The data is loaded into memory through a simple API call, and the
API returns a handle to the data for subsequent playing or looping. The
developer has control over the how the sound file is played; playing
looping, stopping and restarting, rewinding are all inherent capabilities.
Spatialization is accomplished through a simple positioning method that is
source-specific for each buffer. The single listener can also be position
independently of each sound source. One aspect of OpenAL that is
different from other audio API’s is the separation of the audio source from
the audio data. A source is a buffer that can be positioned - it is not tied
directly to any single wave file or sound - the source can be positioned and
any wave file can be played through that source. While this may
complicate programming for a beginning audio programmer, this
distinction is very powerful.

• Audio Rolloff and Attenuation - OpenAL provides for audio rolloff
(attenuation of audio sources based on distance from the listener) through
three different attenuation models - inverse distance, inverse distance
clamped, and exponential. Selection of rolloff model is left to the
developer. Manual attenuation of sources can be accomplished through
volume settings specific to each source.

• Static and Streaming Audio - OpenAL supports both static buffers (buffers
whose data is loaded completely and stored in memory) and streaming
buffers (buffers that contain only a portion of the audio data at creation,
but continually read new chunks of data as specified intervals). Streaming
audio permits the application developer to play extremely large wave files
without the memory of CPU penalty of storage and retrieval. Control over
the “feeding” of audio data is exposed to the developer.

• Pitch Bending or Frequency Shifting - OpenAL supports frequency
modification of audio sources at execution time. This is especially
beneficial when modeling sounds such as automotive engines - the pitch
of the engine sound can be modified to reflect change in velocity.

• Doppler Processing - OpenAL supports audio source Doppler effects.
OpenAL does not calculate audio source velocity and automatically
modify source frequencies for the Doppler Effect, but manual setting of
velocity parameters will permit Doppler effect processing. One
shortcoming to be mentioned here is that, in its current release, OpenAL

30

does not permit setting of a reference velocity for Doppler calculations.
OpenAL has “hard-coded” the speed of sound at sea level (in meters/sec)
as its reference velocity. This restrains the developer from being able to
amplify the Doppler Effect. While from a physically-based modeling
perspective a developer may not be inclined to change the physical
properties of a sound, developing audio software from an entertainment
perspective may require certain audio effects to amplified or diminished.
OpenAL does not support this. A typical example is that of a train
approaching and departing a listener’s position.

Combining all of the above capabilities into a single, platform-independent API

makes OpenAL extremely useful. OpenAL is implemented in many PC gaming engines

like Unreal, including “America’s Army: Operations” developed at the Naval

Postgraduate School. One significant limitation of OpenAL as an audio API is that it

does not directly support live voice audio. Live voice audio can be accomplished with

OpenAL, but requires the use of 3rd -party API’s for voice capture and encoding, network

transmission of voice data, and decoding. Once decoded, the voice data could be used as

an input to an OpenAL streaming buffer and position accordingly to provide a spatialized

voice effect. However, the latency induced by this processing limits OpenAL’s utility to

virtual environments that do not require live streaming voice.

C. DIRECTSOUND3D

DirectSound and DirectSound3D are audio programming API’s produced by

Microsoft. Originally released as individual API’s, they are now integrated and released

as a core component of Microsoft’s DirectX programming suite, currently in release

version 8.1 (available at http://www.microsoft.com\windows\directx). DirectMusic,

released for the first time in DirectX 8.0, is a new audio programming API that both

wraps DirectSound3D and introduces several new functionalities.

DirectSound3D as an API contains all of the functionality of OpenAL listed

above, with the following limitations:

• Limited to Wave Files - DirectSound3D only supports wave file PCM
data in its current release. While wave files are the audio programming
industry’s format of choice, this limitation excludes using other types of
sound data, and may require programmers to obtain additional software
capable of converting audio files to PCM format.

31

• Integration of Data and Sources - DirectSound3D tightly integrates
sound data and the buffer through which it will be played. A static buffer
can only be loaded with audio data once. It can be played and
repositioned, as many times as the developer desires, but it can never
accept new data. In OpenAL, different audio data could be played though
the same buffer. For streaming buffers, functionality of OpenAL and
DirectSound3D is equivalent - audio data can be continually fed into a
streaming buffer and replaced.

The following lists additional capabilities that DirectSound3D has over

OpenAL:

• Audio Effects - DirectSound3D supports seven different types of audio
effects processing directly within its API - echo, gargle, compressor,
chorus, distortion, flanger, and a limited reverb. While these effects are
relatively simple and not extremely flexible, they do provide the
programmer with access to a limited range of audio effects without having
to learn and utilize another API.

• Live Voice - perhaps the single greatest advantage to DirectSound3D
over any other API is its integration of live voice. For those applications
requiring live voice, DirectX contains a core module, called
DirectPlay. DirectPlay supports networking on a client-server or
peer-to-peer structure. A sub-component of DirectPlay is
DirectVoice. DirectVoice integrates DirectPlay’s networking with
DirectSound3D’s spatialized audio capability to provide a spatialized
live voice capability to any programmer. Currently, DirectVoice will
support up to 64 live voices in a session.

DirectMusic is an audio programming API designed to support musicians more

than application developers, but has added capabilities that game or simulation

developers may benefit from using. Some of these include:

• Multiple Audio Formats - DirectMusic supports multiple audio file
formats, including MP3, wave and others

• DLS (Downloadable Sounds) - DLS is a standard for integrating several
audio files for synchronized playback. While both OpenAL and
DirectSound3D can shift frequencies, audio artifacts and distortions
when the shift is far away from the original frequency will become
apparent. DLS permits a programmer to use, for example, three audio
files - one for low frequency sounds, one for intermediate frequency
sounds and one for high frequency sounds, and then overlay them as
necessary during playback. This precludes high- and low-pitch shifted
artifacts and can produce much more realistic sounds in this type of
scenario. Modeling vehicle engines provides an excellent example of the
power of this feature. Three different audio files could represent low

32

RPM, intermediate RPM, and high RPM. Synchronized overlay and
playback would preclude frequency-shifting artifacts and produce a
smooth sounding engine.

• Separation of Buffers from Audio data - DirectMusic uses the OpenAL
model of separating a source from its data. In DirectMusic, a source
(AudioPath) can be positioned, repositioned and manipulated in whatever
fashion the developer desires. Audio data is then placed on the AudioPath
when it is time to play.

• Audio Scripting - DirectMusic supports scripting long segments of
sounds and permits the developer to introduce variability. This capability
might enhance training simulations where ambient sound tracks could be
developed and varied from run to run, without have to re-program audio
sequences between each execution. Like OpenAL, DirectX (either
DirectSound3D or DirectMusic) is a full-feature audio programming
API capable of delivering an exciting audio experience to the user.

While DirectSound3D’s interface is the most difficult to learn and understand,

it offers the most functionality of any audio API available. It is widely used in the video

game industry, and has extensive support for programmers through Microsoft’s MSDN

library, web site and other gaming web sites.

D. EAX 3.0

EAX Audio Extensions is an audio API produced by Creative Technology to

induce numerous types of audio effects, including reverberation, occlusion, obstruction,

and exclusion (available at http://developer.creative.com). The goal of the API is to

produce effects equivalent to modeling the acoustics of rooms, buildings, and other audio

environments. It does this without the expensive CPU requirements of actually modeling

geometry and audio ray tracing. EAX 3.0 is the current release version. EAX works

as an extension to an underlying audio API - EAX is currently configured to work with

both OpenAL and DirectX.

A few of EAX 3.0 Audio Extension’s capabilities include:

• Audio Environments - EAX supports both global and source-specific
audio effects. Global effects are applied to the single listener in the
environment, while source specific effects are independently applied to
audio sources. EAX permits the application developer to select from
over one hundred defined preset environments for global effects, and five

33

high level parameters to modify those presets to obtain the type of effect
the developer desires. The EAX interface supports the ability to:

• Set or modify the environment or room size

• Set or modify the environment or room width or depth

• Set or modify the environment or room materials. For example, a
hardwood floor will reflect a greater amount of sound energy than
a carpeted floor and a wood wall will transmit more sound energy
between rooms than a stonewall.

• Set or modify the environment or room height. A taller room will
reverberate more than a shorter room.

• Audio Source Effects. As audio sources are moved in the environment,
EAX can construct three main types of effects to simulate how those
sources would interact with a listener:

• Occlusion. Occlusion is the perceived effect of a listener and an
audio source being in different rooms. Depending on the type of
material separating the listener from the source (which is fully
modifiable in EAX), a variable amount of sound energy will
penetrate the separator and arrive at the listener. EAX permits
setting of various types of wall or room material.

• Exclusion. Exclusion is the perceived effect a listener hears when
the audio source is not in the same environment but is heard
through a portal, such as a door or a window. Exclusion is an
attenuation of reflected and reverberated sound energy while the
direct path energy is relatively unaffected. EAX supports
modification of parameters to achieve different effects for door or
window size.

• Obstruction. Obstruction refers to the perceived effect when the
listener and the sound source are in the same environment, but an
object is between the two. In this case, direct-path sound energy is
attenuated, especially at high frequencies, and reflected and
reverberated sound is left untreated.

• Multiple Audio Environments and Environmental Morphing. EAX 3.0
supports up to four simultaneous audio environments, permitting
developers to acoustically model multiple rooms. Additionally,
environmental morphing blends effects as listeners traverse portal between
environments for a smooth audio effect.

Each of the three audio source effects is considered to be a “high level” parameter

in the EAX API. Each effect sets or modifies a varied number of “low level”

parameters in the API. The application developer has access to and can modify each of

34

the lower level parameters to fine-tune the implementation to achieve a specific audio

effect.

EAX can be implemented in any audio application. Creative Labs has released

a single API, called the EAX Unified Interface, which permits application

programmers to write audio software without fear of what type of sound hardware is on

the user’s machines. The EAX Unified provides a single API for all versions of

EAX, and even will disable the effects if the host machine’s sound card does not

support EAX without terminating the application.

The most important issue to understand when using EAX is that it does not

employ true architectural acoustics. It is strictly a numerical, parameter-based API for

achieving certain effects. Experience suggests that numerous iterations of parameter

tweaking are required to achieve integrated and synchronous effects for an interactive

application where the listener and sources are in constant movement.

E. SOFTWARE API SUMMARY

In conclusion, both OpenAL and DirectX are extremely powerful audio API’s

capable of delivering a rich audio experience. When combined with EAX, either can

come quite close to simulating an audio experience that rivals reality. DirectX module

API’s are much more difficult to understand and comprehend, and result in a very steep

learning curve for beginning programmers. For beginning programmers, OpenAL

provides an easy to understand API that can familiarize one with the basic of audio

programming yet still create a dynamic audio environment. If the application requires

live voice, DirectX’s DirectSound3D, DirectPlay, and DirectVoice offer the only

integrated API available. However, latency in DirectVoice’s live voice stream may be

too great for some applications.

F. AUDIO RESOURCE MANAGEMENT
Audio resource management refers to the techniques employed to maximize the

capabilities of audio hardware while meeting the audio needs of the application. Any

piece of audio hardware, from a computer sound card to high-end audio equipment, faces
35

limitations as to how many sound sources it can play simultaneously and what types of

audio processing it can accomplish. For purposes of this thesis, audio resource

management will only address PC sound cards, as the audio architecture presented here is

centered on the PC as the delivery platform for the virtual environment.

All sound cards produced today, including Creative Technology’s Audigy

sound card, contain a fixed number of sound buffers for processing audio data. Audio

data can be either statically loaded into a sound card buffer in its entirety or continuously

streamed into the buffer. In either case, the number of buffers on the card will limit the

number of sounds available for simultaneous playback. Audigy, for example, contains

sixty-four sound buffers. Thirty-two buffers exist for 3D processing and thirty-two

buffers exist for 2D (stereo) processing. This means that up to sixty-four non-3D sounds

may be played simultaneously or thirty-two 3D sounds may be played simultaneously (a

hardware accelerated 3D sound buffer can always play 2D sounds.) Now, sixty-four

sounds may appear as a large number, but in actuality it is not, especially in complex

audio environments such as CQB. A scheme must be developed to manage which sounds

are played and, in the event that an attempt to play more sounds than the number of sound

buffers, determine a priority rule for selectively picking which are the “most important”

sounds to be played. DirectSound3D incorporates a technology known as Voice

Management. Voice Management automatically prioritizes which sounds are to be

played based on criteria set forth by the programmer. In general, the criterion used,

whether through Voice Management or by manual programmer control, is to select the

sounds closest to the listener. In this manner, if a virtual environment had more sounds

than the PC sound card could support, sounds the most furthest away from the listener

would be deselected for playback until such a time as the listener moves closer.

Another issue with audio resource management is how effects are processed.

Certain types of effects can be processed in the main CPU, such as volume changes, pitch

or frequency changes, and distance attenuation. While these types of effects, if produced

in software, are possible, software processing of audio data is highly expensive and

induces latency in the overall system. If all audio effects are processed on the sound

card, no CPU degradation due to expensive audio processing will occur. Additionally,

36

some audio effects, such as those produced by EAX, can only be created in hardware

buffers on the sound card.

Although the technology of today’s PC sound cards is rapidly evolving, it still

places a burden on the programmer to manage audio resources. Programmers may elect

to use an automatic resource management tool such as Voice Management, or develop

their own resource management technique.

G. AUSIM3D GOLDSERVER
Due to the described latency in live voice by any VoIP application or client,

including DirectVoice, hardware implementations of live streaming voice were examined

for alternatives to a VoIP application or component client. The criteria for selection of a

hardware alternative consisted of the same criteria mentioned previously: utilize COTS

technology whenever possible; attempt to minimize cost; and ensure the system would be

compatible with a PC-based virtual environment training system. Additionally, any

hardware implementation must be:

• Compatible with any or all of the API possible solutions discussed in this
chapter

• Capable of spatializing the voice signal in three dimensions. Live voice in
a virtual environment should act like sounds in a virtual environment,
emanating from point sources, directionalized and spatialized, and perhaps
most importantly, movable within the virtual environment. Voices should
appear to be coming from avatar representations of the players in the
shared virtual environment.

37

The search for an alternative hardware implementation was brief; there were only

two hardware solutions to live streaming voice currently available. One solution was to

connect separate virtual environments training systems with a simple telephone

connection for live voice. While fairly easy to implement - telephones with headset jacks

could be routed to each location in a shared virtual environment for live voice

communications between participants. However, a telephone-type communications

system would be unable to spatialize the voices to co-locate them with their avatar

“owners”. The only remaining solution found was the Ausim3D GoldServe Audio

Localizing Server System, produced by Ausim3D of Los Altos, California

(http://www.ausim3d.com).

The GoldServe is capable spatializing live voice with an advertised latency of 5 –

10 ms, virtually imperceptible to the participants. Characteristics such as distance

attenuation, rolloff, and source directivity are additional capabilities of the Ausim3D

GoldServe.

There are two main limitations to the GoldServe when implementing it as the live

streaming voice solution. First, the GoldServe only supports headphone audio. Virtual

environment audio delivery systems range from loudspeakers to headphones to

combinations of both. Research at the Naval Postgraduate School by Scorgie and

Sanders (2002) suggest there is a relationship between the sense of presence and

immersion in the virtual environment and the selection of which type of audio delivery

system. Their initial findings indicate that loudspeakers are superior to headphones in

providing the user of the virtual environment with a sense of presence and immersion.

Further study is warranted, but a virtual environment capable of delivering audio only

through headphones may face a limitation on its immersive capability. They also

examined whether an audio delivery system combining a subwoofer with headphones had

any effect on the sense of presence. Their findings suggested no effect on presence for

this treatment.

38

Second, the GoldServe Audio Localizing System requires the co-location of the

individual virtual environment trainers or simulators. The GoldServe, while network

capable for accepting audio commands and data, does not support an IP-based audio

delivery system. The GoldServe, as part of a multiple participant virtual environment,

requires that each of the participants be directly connected to the GoldServe hardware

through standard headphone cables and headsets. This limitation precludes an

implementation for a scenario where the multiple participants are distributed across a

wide area or large network. Additionally, the GoldServe, depending on its configuration,

will only support a fixed number of participants. The GoldServe system used as part of

the development of the audio architecture for this thesis is limited to four active listeners.

It is a single processor system. Individual GoldServe systems can be upgraded to dual

processors, in which case the number of listeners double to eight. Additionally, chains of

GoldServes can be constructed to permit creation of large numbers of listeners necessary

for any particular application. For example, four dual processor machines could support

up to 32 listeners. Naturally, purchasing a dual processor Ausim3D system or multiple

systems will provide a greater number of listeners (users), but the number will still

remain fixed.

Even in light of these limitations, for those virtual environments involving

multiple, physically co-located participants, the GoldServe is the best solution for

providing live streaming voice available. Considering that many military virtual

environment training systems are being designed to deploy onboard ship for individual or

team training, the GoldServe is an extremely viable solution. Onboard ship, teams of

virtual environment users will likely be co-located with potentially severe space

limitations. It is likely that each simulator will not be able to capture enough space for

setup of a loudspeaker audio delivery system considering the limited space requirements.

Headphone delivery systems may be the only solution to deployable virtual environment

training systems. Additionally, the physical co-location of the users matches the

GoldServe limitation on distribution of users. For other implementations, where

participants are distributed across a wide area or network, VoIP remains as the only

viable solution for providing live voice.

Future upgrades to the Ausim3D GoldServe will implement a broad range of

room acoustic modeling capabilities. When these upgrades are complete, the GoldServe,

combining spatialized, live voice with a run-time room acoustics processing capability,

will be the premier audio system for developing fully interactive, multi-participant virtual

environment training systems and simulations.

H. OVERALL SYSTEM ARCHITECTURE
The audio architecture described in this section is meant to cover many different

possible implementations in virtual environments and is a general overview. Specific

implementation for each of the software components is found in Chapter IV. It can be

described as a “tool box” of hardware and software components that can be arranged and

combined in different ways for different virtual environment training systems, including:

39

• Single independent user

• Multiple physically co-located users

• Multiple distributed users

The audio architecture is subdivided into two sections, a core component found

on all implementations, and a live voice component, from which the virtual environment

training system developer will select one of two options for implementation.

The core component of the audio architecture is a combination of

DirectSound3D and EAX software implemented on each system. Other than live

voice, each system, whether connected to others or not, is responsible for generating all

sounds and sound effects heard by the user of that system. This core component supports

all three implementation options described above, and is in compliance with the

requirement that the audio architecture be COTS technology, low cost, and PC-based.

Virtual environment audio is generated locally through the PC sound card. Even when

connected to other virtual environment participants, sounds for remote users are

generated locally by exchanging network packets with pre-formatted audio data. Each

user’s system will contain a library of necessary audio files for playback of all sounds

potentially heard in the virtual environment. The core component is a software-only API

designed to be compatible with a standard PC. Specific implementation details are found

in the next chapter.

For single, independent users, only the core component of the audio architecture

is implemented as shown in Figure 8. The core component can meet all of the audio

requirements for a single-user virtual environment.

Figure 8. Single Independent User Audio Implementation.

40

For multiple, physically co-located users, the audio architecture will contain the

core component and the Ausim3D GoldServe (Figure 9). In this case, DirectSound3D

and EAX will provide all sounds and sound effects for each user on his or her

individual system. An IP network connection between users will provide a data path for

transmission of audio data relating to remote participant sounds and actions that generate

sounds. Audio generated by each individual system’s sound card will be routed and

connected to the GoldServe as a live audio feed. Since spatialization of audio for sounds

and sound effects has already been processed on the individual user’s systems, there is

not requirement for additional processing on the GoldServe, other than a simple stereo

separation of audio channels from the individual PC systems. Each user’s system is

connected via two standard ¼” audio cables, left and right audio channels from the

individual system sound card, to the GoldServe and the channels are panned left and right

respectfully. Each user’s microphone is also connected as a live voice input to the

GoldServe, and spatialization processing is completed by the GoldServe to match the

situation in the virtual environment. A separate PC system connected to the IP network

will function as an audio server, connected to the GoldServe via a RS-232 data cable to

provide the GoldServe with positioning information for all users in the shared virtual

environment. The server may be one of the participants in the shared virtual

environment, or another PC acting solely as a central connection point between the IP

network of virtual environment users and the GoldServe. When possible, it is

recommended that a stand-alone system be employed as the audio server for the

GoldServe. Virtual environment graphics can be very CPU intensive to process, and

requiring one of the user systems to additionally serve as the audio connection to the

GoldServe may induce processing latency in the display.

41

Figure 9. Multiple, Physically Co-Located User Audio Implementation.

When multiple users are not physically co-located and distributed over a wide

area, the audio architecture will contain the core component and use DirectVoice for

live streaming voice (Figure 10). In this instance, no audio server is required for

connection to any additional hardware. DirectVoice, using DirectPlay as its

networking layer beneath streaming voice signal, is established either in conjunction with

a data network for the simulation or as a stand-alone connection only for the voice

stream. The DirectPlay network should be established as a peer-to-peer connection,

meaning that each participant in the network transmits data to each of the other

participants. DirectPlay and DirectVoice support up to sixty-four simultaneous users

in a shared virtual environment.

The benefit of this architecture is that the voice stream, DirectSound3D

streaming sound buffers reserved for live voice signals, can be processed by EAX for

sound effects like other sounds in the environment. Occlusion, obstruction, exclusion

and reverberation are effects that can be applied to voice streams just as they can be

applied to other sounds in the environment. The principle limitation of this architecture
42

is the latency in the voice signal, as discussed. Chapter V outlines an experiment

conducted to measure and compare the latency in live streaming voice between the

GoldServe and DirectVoice under various network-loading conditions. If multiple

users of a shared virtual environment must be distributed and cannot be co-located, VoIP

currently offers the only solution for live streaming voice. Training system designers

must address whether the latency in the live voice stream is acceptable or unacceptable.

If unacceptable, alternatives, such as text-based messaging, can be implemented for real-

time communications between users.

Figure 10. Multiple Distributed User Audio Implementation.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

IV. VOICE LATENCY ANALYSIS

A. INTRODUCTION
Latency has been shown to be a critical issue in live voice in virtual

environments. The latency in live voice can arise from several areas, including network

latency and audio compression.

Network latency is induced when the IP-based network is heavily burdened with

transmitting a high amount of data packets. The level of network traffic will vary

depending on network configuration. Depending on virtual environment network design,

network latency can be extremely severe and significantly add to latency in both data

transmission and the live voice signal

Latency in live voice can also be induced at the source through a process known

as compression. Live voice, like any live audio input, is generally sampled at a known

rate and digitized into text or binary data for transmission across the network in

standardized data packets. Numerous compression schemes have been created to lower

the sampling rate, package more data into each voice packet for transmission over the

network, and decode the network voice packets at the receiver. Compression, while

attempting to reduce the number of voice data packets to limit network loading, induces

latency by storing data about the voice signal over a small period of time before

packaging and transmission. Depending on the selected compression algorithm, this

small amount of time can be very noticeable to live voice users in a virtual environment,

especially when the virtual environment displays a graphical image for users to compare

with the voice signal. Without a graphical display, users would not easily determine that

the voice signal delay was latency as opposed to human delays in speaking. However, in

virtual environments where the graphical display and the audio display must be highly

synchronized, latency in voice can be very obvious. At best, the latency can be

distracting; at worst, it can significantly decrease immersion and training effectiveness.

45

B. EXPERIMENTAL DESIGN

1. Apparatus

To control the type and quality of the audio signal being used for testing, both

between the Ausdim3D GoldServe and DirectVoice and within each run for each

implementation, the decision was made not to test an actual live voice. Instead, a 1000Hz

tone would be generated and pulsed through each system. The 1000Hz frequency was

selected as it falls within the normal voice range of frequencies, from 500 Hz to 2000Hz.

To generate the pulse, a Hewlett Packard 8015A Pulse Generator was employed. The

8015A Pulse Generator is capable of delivering single, burst, or continuous pulses of

audio from one nanosecond to one hertz.

To view the output of each implementation’s test runs, a Tektronix TDS 3012

Digital Phosphor Oscilloscope was utilized. With the capability to simultaneously

display two signals (pulse and resulting audio signal from receiver), the oscilloscope

could provide a graphic display of the original pulse and the resulting received signal.

The signal from the pulse generator was routed to the oscilloscope.

2. Procedures

The Ausim3D GoldServe has its own internal latency measurement software, but

this option was not utilized. The testing software only measures the latency of the signal

during processing on its own sound card. While this is the bulk of latency on the

GoldServe, it cannot be considered as a complete measurement as it does not take into

account latency in the signal path through other hardware components.

For the Ausim3D GoldServe, a simple test application was developed to create

two listeners, each with a live voice channel. For the test, the output of the pulse

generator was connected to the microphone (live voice) input and the headphone output

was connected to the oscilloscope for display. Twenty-three individual runs were

completed, each with a single audio pulse. Individual run graphic outputs were saved and

are shown in Appendix C.

46

Early in the test, an attempt was made to vary the listener positions to determine if

it had an effect on latency of the voice signal. It was quickly determined that the

GoldServe implements an algorithm to calculate time of arrival using the standard speed

of sound to delay audio based on distance from virtual source to virtual receiver. This

capability was under development by Ausim3D, but not specifically listed in the product

documentation. DirectVoice does not support time of arrival delay in its audio

processing. Therefore, to ensure that no additional latency in the received signal was due

to the GoldServe’s distance delay algorithm (which is not latency but an attempt to

reproduce sounds more realistically by modeling time of arrival and distance delay),

positions were varied in three dimensions but limited to no more than one meter of virtual

separation.

An equivalent procedure was employed to test DirectVoice latency. In this

case, the pulse generator was connected to one PC’s sound card microphone input and the

oscilloscope was connected to the headphone output of a second PC. A DirectVoice

connection was made between the two PCs, and thirty measurements were taken.

Graphic results can be seen in Appendix C.

C. RESULTS AND ANALYSIS
The numerical results of the experiment are summarized in Table 2.

Treatment Average Latency Standard Deviation

VoIP – DirectVoice 205 15.2

Hardware – GoldServe 13.1 0.2

Table 1. Average Latency Measurement in Milliseconds.

The results indicate a large difference in the latency of the GoldServe’s live voice

implementation compared to DirectVoice’s implementation. Two points must be made

before the analysis. First, the GoldServe is not subject to network delays or heavy

message loading. As seen back in Figure 9, the network connection for transmitting

47

virtual environment state data is not even connected to the GoldServe. The GoldServe is

connected to the network via a “repeater” node - a computer not serving as one of the

participants in the simulation. Therefore, factors that could affect network performance

will not affect the GoldServe audio processing or the live voice latency. The measured

GoldServe latency would stay relatively constant, regardless of other requirements placed

on the virtual environment network. Second, the DirectVoice VoIP implementation

will be affected by network performance. If the state information necessary to maintain

the virtual environment burdens the network with heavy message flow, either voice

latency will increase or voice quality will degrade as increasing numbers of voice data

will be lost or reconstructed out of sequence.

In other words, the average latency measurements must be viewed differently.

The GoldServe average latency, 13.1 ms, can be seen as an average under virtually any

network loading condition. The DirectVoice latency average, 205 ms, should be seen

as a best-case scenario. The scenario is best case in that the DirectVoice connection

was only between two computers, and no burden was placed on the network connection

to support a significant level of virtual environment state information transmission. If the

numbers of participants were to grow or the level of network transmissions were to

increase, either as a result of more participants or a requirement to transmit additional

state information, the latency would increase.

Returning to the discussion of synchronization in a virtual environment, Bolot and

Fosse-Parisis (1998) determined that a de-synchronization between the audio and visual

presentations in a virtual environment should not exceed approximately 185 ms. If de-

synchronization is greater than 185 ms, it will become noticeable to the user and

distracting from the environment. In a military virtual environment training system,

where the subject matter being trained in the virtual environment may crucial to real

world life and death situations. If the users are distracted during the training due to

latency in voice communications, it may have a detrimental effect on the battlefield. The

GoldServe’s latency measurements fall far below this threshold. The VoIP

measurements, remembering that they are best case, exceed the threshold, and will likely

exceed it further as the training system becomes more complex with more participants.

48

The GoldServe solution to live voice is vastly superior to a VoIP live voice

implementation.

D. SUMMARY
From the results and analysis, it is shown that a VoIP implementation of live

voice in a virtual environment will have a significantly higher level of latency than a

hardware live voice implementation like that found in the Ausim3D GoldServe. Voice

latency greater than 185 ms will not only be noticeable to users, but potentially

distracting and detrimental to training. The GoldServe’s superior latency measurements

indicate it is the best solution for live voice. Only in those situations where the

networked virtual environment participants cannot be co-located should VoIP be utilized

for live voice. It is speculated that whether an application requiring live voice will suffer

from some level of training degradation due to voice latency is highly application

specific. For example, the extremely complex CQB environment described by

Greenwald (2002) requires live voice in virtually every phase of operations. CQB, by its

very nature, is an extremely rapid and volatile activity. Verbal communications between

team members is quick, precise, and demands immediate response. If a virtual

environment training system employs a high-latency live voice sub-system, the latency

may not only degrade the verbal communications, but also contribute to operational

mistakes of a potentially life-threatening nature. In the real world, military members

executing a CQB mission would never accept a radio communications system that

induced potentially deadly delays in critical communications. However, other training

activities may not suffer at all. For example, a virtual ship-handling environment

designed to simulate two or more vessels working together may not seriously suffer from

latency in simulated radio communications. The need for low latency live voice has been

demonstrated, but is not always applicable for every training system. Determining which

types of applications require low latency live voice and those that can accept a higher

level of latency bears further analysis.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

V. SOFTWARE IMPLEMENTATION

A. INTRODUCTION
This chapter provides a specific implementation in software for two APIs. The

first, gfAudio, combines DirectSound3D and EAX into s single API capable of a

fully immersive auditory virtual environment. The second, auServerLib, is an API

capable of accepting an external network connection to a multi-user, shared virtual

environment and communicating with the Ausim3D GoldServe hardware for live voice.

Both were developed to work in conjunction with gfLib, a virtual environment-authoring

library developed at the Naval Postgraduate School by Erik Johnson. Due to licensing

requirements for other virtual environment authoring libraries, such as Vega from

MultiGen Paradigm and Unreal from Epic, gfLib provided a high-quality, open-source

graphics library that could be used to test the implementation of both gfAudio and

AuServerLib. Although there are specific methods, variables and functions that permit

gfAudio to efficiently integrate into a gfLib application, with little modification gfAudio

can be separated into a stand alone API for use with any virtual environment authoring

library. AuServerLib is constructed to work with any type of networked virtual

environment. Both libraries were constructed using standard object-oriented

programming design principles.

AuServerLib was constructed to be more than simply a “connection” protocol for

external networked virtual environments to communicate with the Ausim3D GoldServe.

It is designed to be a fully functional API capable of exploiting all functionalities of the

GoldServe, and can be used to construct many different types of applications. The

auServerLib API can be used for such applications as audio or voice testing, or single- or

multiple-user acoustic environments. Although in the architecture described for virtual

environments in this thesis only utilizes the GoldServe for live spatialized voice, the

auServerLib API is capable of integrating pre-recorded wav files and live input channels

into any virtual environment.

In the next two sections, each of the libraries main source code and

implementation details is examined. The core functions and architecture are described as

51

to how each class accomplishes it role within the libraries. Appendices A through D

provide complete documentation and source code for further reference. The following

typeset convections are used:

• Courier new text will indicate source code. For example, a portion of
source code contains: EAXDirectSoundCreate

• Bold text will be used for software objects created as interfaces to either
DirectSound3D or EAX internal source code or methods. For
example, an object will appear as: IDirectSound

B. GFAUDIO

1. gfAudioGlobal

The gfAudioGlobal.h and gfAudioGlobal.cpp files contain methods to initialize

both DirectSound3D and EAX. Initialization is accomplished as depicted in Figure

10:

 if(FAILED(hr = EAXDirectSoundCreate(NULL, &pDS, NULL)))

 . . .
 if(FAILED(hr = pDS->SetCooperativeLevel(
 (HWND)win->GetGZWindow()->getHandle(), DSSCL_PRIORITY)))

Figure 11. DirectSound3D and EAX Initialization Code.

The EAXDirectSoundCreate method creates an interface object of type

IDirectSound, which is the primary interface in DirectSound3D with the host

machine’s sound card. The IDirectSound object is used to create all other interfaces in

DirectSound3D. Setting the cooperative level to DSSCL_PRIORITY permits

DirectSound3D to share resources on the sound card with other applications running on

the host machine. Like other windows-based applications, DirectSound3D uses a

“window focus” design where sounds associated with a particular application window

will only be heard through the sound card when the application window has the focus on

the desktop.

Once the IDirectSound3D interface is constructed, the primary buffer for all

sounds is created:

52

 if(FAILED(hr = pDS->CreateSoundBuffer(&pBufDesc, &pDSBPrimary,
 NULL)))
 . . .

Figure 12. Creating the Primary Sound Buffer.

The primary sound buffer, pDSBPrimary, can be thought of as the final mixer

and combiner of all sounds playing simultaneously in the audio environment. The

primary buffer format can be set to accept pre-recorded sounds with different sampling

rates; generally accepted sampling rates are either 22050 Hz or 44100 Hz. Most

commercially available recording software packages contain options for recording at

these and other sampling rates.

The gfAudioGlobal files contain a sub-class named gfAudioNet, which is

designed to play sounds in a networked, shared virtual environment. For example, in a

two-person shared virtual world, when either participant initiates an action that produces

a sound, the other participant should be able to hear that sound as well, taking into

consideration such conditions as distance between users in the environment and the

presence of obstacles or obstructions. When a developer determines that a sound should

be able to be heard between users or participants, gfAudioNet automatically receives the

notification to play a remote user’s sounds on a local user’s machine. It is assumed that

in a networked, multiple user virtual environment, each user has access to the same

library of stored, pre-recorded wav files. Beyond the presence of the pre-recorded wav

file, individual user’s applications do not have to be configured for every time of sound

that other user’s may initiate. The gfAudioNet class automatically discovers the name of

the remote sound, creates the necessary gfSoundObject associated with the sound, and

plays it according to specifications. Once created, these sound objects are stored for later

use.

2. gfListener
The gfListener class is responsible for acting as the ears of the observer in the

virtual environment. As in the real world, the listener’s location and orientation are

dynamic and moveable. The portion of the source code responsible for listener object

creation is shown in Figure 12. After gfAudioGlobal initializes DirectSound3D and

53

creates the primary buffer, the primary buffer is used to create and obtain an interface to

the DirectSound3D IDirectSound3DListener object, which is a software interface to

permit setting of listener properties that affect all sounds and the global audio

environment.

 if(FAILED(hr = pDSBPrimary->QueryInterface(IID_IDirectSound3DListener,
 (void**)&pDSListener)))
 . . .
 if(FAILED(hr = pDS->CreateSoundBuffer(&sndBufferDesc, &pDSB, NULL)))
 . . .
 if(FAILED(hr = pDSB->QueryInterface(IID_IDirectSound3DBuffer,
 (void**)&pDSB3D)))
 . . .
 if(FAILED(hr = pDSB3D->QueryInterface(IID_IKsPropertySet,
 (void**)&pEAXListener)))
 . . .

Figure 13. gfListener Configuration Source Code.

The IDirectSound3Dlistener object, pDSListener, is essentially software

“ears” of the user in the virtual environment. Methods in the gfListener class permit

setting the location, orientation and elevation of the listener. Orientation is particularly

important in that it allows for 3D spatialization of sounds in the environment to occur.

For example, if the listener’s head orientation changes, such as rotating the head from

looking forward to looking to the left, sounds originally emanating from forward of the

listener will not appear to the right.

Figure 12 also shows the creation of other DirectSound3D objects, including

creating a sound buffer, creating a 3D sound buffer and creating an interface to an EAX

property set, pEAXListener. The sound buffer and 3D sound buffer are only

created to obtain the interface to the EAX property set, and then discarded. EAX

property sets are software objects and interfaces used to set EAX values. They are

standardized methods using standardized variables for creating such effects as

environmental reverberation. EAX property sets are created for the listener and each

individual sound object in the environment. Effects set through the listener’s EAX

property set are global in nature; they apply to all sounds in the environment. It is

analogous to applying a sound effect filter in our ears - every sound arriving at our ears is

54

filtered for the given effect. An example of setting a global environmental effect, such as

the listener being positioned inside a sewer pipe, is shown in Figure 13. EAX contains

over 100 preset acoustic environments for software developers to use to create acoustic

effects in virtual environments. EAX 3.0 has expanded the number of presets to over

one hundred different acoustic environments.
 EAXLISTENERPROPERTIES env = EAX30_PRESET_SEWERPIPE;
 if(FAILED(hr = pEAXListener->Set(DSPROPSETID_EAX_ListenerProperties,
 DSPROPERTY_EAXLISTENER_ALLPARAMETERS, NULL, 0, &env,
 sizeof(EAXLISTENERPROPERTIES))))
 . . .

Figure 14. Setting an EAX Property for the Listener.

The gfListener class contains other methods to permit the following:

• Tethering the listener to an object. The listener can be “tied” to an object
in the virtual environment for automatic position and orientation updating.
In most cases, the object to tether a listener to is the observer in the
environment, which represents the user. In most virtual environment
development libraries, including gfLib and Vega, an observer is
considered to be the “eyes” of the user. Tethering the ears to the eyes of
the participant is naturally expected.

• Doppler Effect settings. For a natural Doppler effect, velocities of the
listener and the sounds in the environment must be known.
DirectSound3D does not automatically calculate velocity by measuring
change in position; the developer must manually set the velocity. A
simple algorithm to measure distance change over time determines
velocity. Additionally, the Doppler Effect can be exaggerated. In many
instances, a developer may want to exaggerate the Doppler Effect to make
it more noticeable to the user. The gfListener class contains a method to
set a factor that either over- or under-exaggerates the Doppler effect, based
on developer preference and design.

• Rolloff and distance calculations. In addition to head orientation, distance
from source to “ears” is the other primary characteristic by which we
discern spatialization of sounds. The gfListener class permits a developer
to either over- or under-exaggerate the global attenuation of sounds as
they move further away from the listener. In certain virtual environment
scenarios, the exaggeration may be required to provide the desired
attenuation “feel” for distance and near sound sources.

55

3. gfSoundObject

The gfSoundObject class represents a sound in the virtual environment. This

class has the capability to load, locate, play, and loop pre-recorded audio files using the

wav audio file format. Additionally, gfSoundObject contains methods to set sound-

specific effects, such as occlusion, obstruction and exclusion. These effects are rendered

through the integration of EAX with DirectSound3D. EAX, to create these types

of effects, just obtain hardware resources on the host machine’s sound card. EAX

processing is only permitted in hardware; thus, if the host machine’s sound card does not

contain the necessary sound buffers for EAX processing, EAX effects will not be

processed nor heard. Most sound cards produced today, such as Creative Labs Audigy

and SoundBlaster series audio cards, contain between 16 and 64 hardware buffers on the

sound card itself, permitting EAX processing for an equivalent number of sounds in the

environment. However, limiting a virtual environment to between 16 and 64 sounds

significantly limits the environment’s ability to provide a rich and fully immersive audio

environment. The gfSoundObject class overcomes this limitation by dynamically obtain

sound card hardware resources only when a sound is playing or looping. Upon

completion of the play or loop sequence, the buffers on the sound card are released and

resources are returned to the operating system. In this manner, the only limit on the

number of sounds in the virtual environment is the number of simultaneously playing

sounds, still limited to between 16 and 64, depending on sound card hardware resources.

However, an unlimited number of gfSoundObjects can be created and stored for

playback.

The gfSoundObject, unlike the gfListener, does not create the necessary

DirectSound3D and EAX software objects at instantiation. Instead, the

DirectSound3D and EAX interfaces are created only through a method call to play or

loop a sound. Obtaining the necessary hardware resources to play or loop a sound are is

show in Figure 14.

if(FAILED(hr = pDS->CreateSoundBuffer(&m_DSBufDesc, &pDSB, NULL)))
. . .
if(mType == GF_3D)
{

56

 if(FAILED(hr = pDSB->QueryInterface(IID_IDirectSound3DBuffer, (void **)
 &pDSB3D)))
 . . .
 if(FAILED(hr = pDSB3D->QueryInterface(IID_IKsPropertySet,
 void**)&pEAXSource)))
 . . .
 if(FAILED(hr = pEAXSource->QuerySupport(DSPROPSETID_EAX_BufferProperties,
 DSPROPERTY_EAXBUFFER_ALLPARAMETERS, &support)))
 . . .
 if ((support & (KSPROPERTY_SUPPORT_GET | KSPROPERTY_SUPPORT_SET)) !=
 (KSPROPERTY_SUPPORT_GET | KSPROPERTY_SUPPORT_SET))
 . . .

Figure 15. gfSoundObject Obtaining Resources for Play or Loop.

First, a DirectSound3D hardware buffer, pDSB is created using the

IDirectSound object created in gfAudioGlobal. The pDSB object is a DirectSound3D

IDirectSoundBuffer object that acts as the final mixer for any effects, such as 3D

spatialization, EAX effects, or pitch and volume changes for the sound. To permit

spatialization, an IDirectSound3Dbuffer is obtained, pDSB3D. Like the gfListener, an

EAX property set, pEAXSource, is created for the occlusion, obstruction, and

exclusion effects processing. Unlike the gfListener, EAX effects processed by an

individual gfSoundObject are only for that sound; the effect is considered to be source

specific.

When it comes time to play the sound in the virtual environment, the process of

obtaining resources, setting parameters and effects, and locating the sound in 3D is

accomplished as depicted in Figure 15.

if(!loop) ReleaseResources();
. . .
if(!ObtainResources())
{
 CheckPlayingSounds();
 if(!ObtainResources()) return;
}
if(pDSB)
{
 if(mType == GF_2D)
 {
 SetPan(mPan);
 }
 if(pDSB3D)
 {
 pDSB3D->SetMinDistance(mMinDistance, DS3D_DEFERRED);
 pDSB3D->SetMaxDistance(mMaxDistance, DS3D_DEFERRED);

57

 pDSB3D->SetConeOrientation(mConeDirection[0], mConeDirection[1],
 mConeDirection[2], DS3D_DEFERRED);
 pDSB3D->SetConeAngles(mMinConeAngle, mMaxConeAngle,
 DS3D_DEFERRED);
 pDSB3D->SetConeOutsideVolume((long)mOuterConeVolume,
 DS3D_DEFERRED);
 if(mRel)
 {
 pDSB3D->SetMode(DS3DMODE_HEADRELATIVE, DS3D_DEFERRED);
 }
 else
 {
 pDSB3D->SetMode(DS3DMODE_NORMAL, DS3D_DEFERRED);
 pDSB3D->SetPosition(mPosition->X(), mPosition->Y(),
 mPosition->Z(), DS3D_DEFERRED);
 SetOcclusionSettings();
 SetExclusionSettings();
 SetObstructionSettings();
 if(g_gfListener) g_gfListener->CommitDeferredSettings();
 }
 }
 if (loop)
 {
 pDSB->Play(0, 0, DSBPLAY_LOOPING);
 if(isNetworked) Send(GF_LOOP);
 }
 else
 {
 pDSB->Play(0, 0, 0);
 if(isNetworked) Send(GF_PLAY);
 }
 SetPitch(mPitch);
 SetVolume(mVolume);

Figure 16. Playing a Sound with gfSoundObject.

58

When a sound is played, the gfSoundObject first determines whether the desire to

play the sound one time or to continuously loop the sound. If the sound is to be played

once, any resources obtained for a previous play are released. This precludes multiple

hardware buffers being obtained from the sound card for a single sound. This is not

required for a looping sound. Since looping sounds will play continuously until an overt

action terminates the sound, the termination will release the resources upon stopping the

looping sound. For a single play, there is not overt method call or action that terminates

play; thus, for single-playing sounds, the release of previously held resources ensures

optimum usage of precious hardware resources on the sound card. The gfSoundObject

then attempts to obtain the necessary hardware resources. If it is successful, it continues

through the remaining stages of the method. If not, the gfSoundObject, through the

CheckPlayingSounds() method, runs through a global list of all sound objects to

determine if any gfSoundObject that currently is holding resources on the sound card has

completed playing. If so, it releases those resources, returning those sound card resources

to the operating system for usage elsewhere. Upon completion of the

CheckPlayingSounds() method, the gfSoundObject once again attempts to obtain

hardware buffers on the sound card. If successful on this second attempt, processing

continues. If not, the method is aborted and the sound is not played. In this case, the

decision as to how to handle playing the respective sound is left up to the application

developer - this case can only arise when the developer is attempting to play more sounds

than the sound card hardware will support.

The gfSoundObject class contains the functionality to permit directivity of a

sound. Directivity refers to sounds that emit energy in a specific direction instead of

emitting energy omni directionally. Figure 16 shows a directional sound source. The

volume of the inner cone and outer cones and direction of sound emanation are

controllable by the developer. The volume of the sound source in the transition zone is

automatically calculated by DirectSound3D, attenuating from the level in the inner

cone to the outer cone linearly.

Figure 17. Directional Sound Source.

Processing continues by setting all of the stored characteristics of the sound -

position, directivity (cone), minimum and maximum distance, and occlusion, obstruction

or exclusion effects.

59

The gfSoundObject class allows for two general types of sounds in the

environment - 2D or 3D sounds. 2D sounds are those that are not spatialized in three

dimensions. Sounds that are 2D are always rendered as if they are located at the

listener’s position. These sounds can only be panned left or right. Panning refers to

separating the left and right stereo channels and applying individual gain (volume

settings) to each to mimic positioning the sounds to the left or the right of the listener.

On face value this would not seem beneficial to using 3D sounds, which permit full

spatialization around the listener. However, most sound cards contain separate hardware

resources and buffers for processing 2D sounds, which are distinct and separate from

those resources for processing 3D sounds. For sounds associated with the listener that

will always be positioning relative to the listener, such as footsteps, utilizing a 2D

gfSoundObject will free 3D hardware resources for utilization by other sounds. In this

manner, applications may increase the number of simultaneously playing sounds by

utilizing a mixture of 2D and 3D sounds, optimizing the hardware resources on the sound

card.

Other methods in the gfSoundObject class do the following:

• Set pitch of the sound. Three methods permit manual frequency changes
for the sound: increase pitch, decrease pitch, and set pitch. Changing the
pitch changes the sampling frequency of the stored wav file during
playback. This is very useful in simulating sounds such as engine noise
that changes with an RPM change.

• Setting volume. Three methods permit volume manipulation of the sound.
All volume changes are applied to the original gain (volume) of the sound.
The volume cannot be increased over the original recorded volume, but
can decrease the volume of the sound. If the volume is decreased, it can
be increased, but only to a maximum of its original recorded level.

• EAX effects. The three source-specific EAX effects (obstruction,
occlusion and exclusion) can be set for each individual sound. The
gfSoundObject class only permits manual setting of these effects; for
automatic updating of effects as the listener moves through a virtual
environment, see the documentation regarding gfAudioEnvironment,
gfAudioEnvironmentManager, and gfAudioEnvironmentTransition.

• Tethering a sound to an object. The gfSoundObject class permits a sound
to be tethered to any object in the environment. Most sounds in a virtual
environment will emanate from a physical source, graphically rendered to
the observer in the environment. A gfSoundObject can be tethered to an

60

object and as the object is moved or updated in the environment, the sound
will dynamically move with it.

Another significant option for gfSoundObjects is the ability to network sounds.

For example, if two participants share a networked virtual world, and the first user

initiates an action that produces a sound, the second user should hear the sound in the

exact location where the first user created it. The gfSoundObject contains a state variable

for use by the developer to automatically inform all remote users in a shared virtual world

of a sound, as show in Figure 18.

void gfSoundObject::Send(gfSoundActionEnum action)
{
 gfSoundActionPacket *soundAction = new gfSoundActionPacket();
 strcpy(soundAction->mFileName, GetFileName());
 soundAction->action = action;
 sgVec3 pos;
 this->GetPosition(pos);
 sgSetVec3(soundAction->mPos, pos[0], pos[1], pos[2]);
 soundAction->mType = GFPACKET_TYPE_SOUND_ACTION;
 soundAction->mPacketSize = sizeof(gfSoundActionPacket);
 if(mTether) soundAction->mTethered = true;
 if(g_gfNetwork) g_gfNetwork->Send(soundAction);
}

Figure 18. gfSoundObject Send Method.

When the application developer desires to expose a sound to the network, the

instantiation of the gfSoundObject constructor sets a variable that flags this sound as one

that will transmit state information to the network whenever a state change is made.

Figure 16 depicts the creation of a network data packet for the sound in question.

4. gfAudioEnvironment

The gfAudioEnvironment class represents an audio environment or room within

the virtual world. A gfAudioEnvironment is instantiated for each separate room in the

virtual environment, and individual acoustic characteristics can be set to represent the

natural acoustics of that type of room or space. The gfAudioEnvironment.h and

gfAudioEnvironment.cpp files contain two utility shape classes, gfCube (representing a

three-dimensional cubic volume) and gfSphere (representing a three-Dimensional sphere)

for determining the size and location of the audio environment.

61

The gfAudioEnvironment class is used strictly to determine whether a position in

the virtual environment is contained within the associated shape of that environment and

to store characteristics of that audio environment, such as size, shape, EAX acoustic

properties and material conditions. The EAX acoustic properties are associated with

the type of reverberation that will be applied in that audio environment. The material

properties are settings that will affect the transitivity of the sound through barriers of the

environment. For example, the material properties of an environment might be set to

stone, indicating that the audio environment is mimicking a room with stonewalls,

ceilings and floors. A different audio environment might be set to wood. A stone room

will almost completely block all sounds generated inside the room from transmitting

through the barriers walls. A wool room will permit a portion of the sound energy to

transmit through the walls. Any position can be checked as to whether it resides inside

the environment or outside the environment. For example, every time step the listener’s

position is compared to a global list of audio environments to determine which

environment the listener is in. When a match is found, any characteristics of that

environment can be set for the listener. The gfAudioEnvironment class, by itself, does

not set the characteristics for any other class; it is used by the

gfAudioEnvironmentManager to maintain the state of the listener as it moves through the

virtual world.

5. gfAudioEnvironmentTransition

The gfAudioEnvironmentTransition class is used to model the acoustic effects of

sounds as they transmit through portals, such as doorways and windows. It sets an area

or location in the virtual environment where acoustic effects can be blended between

audio environments with different characteristics.

Initially, a gfAudioEnvironmentTransition is constructed with references to two

gfAudioEnvironments. The two environments are independently created to represent the

separate audio environments separated by the portal. Additionally, like in

gfAudioEnvironment, a shape is given to the transition zone overlapping the two

environments, as in Figure 18. The same shape classes are used as in

62

gfAudioEnvironment. If the listener is located within a gfAudioEnvironmentTransition

shape, the acoustic environment settings from each of the gfAudioEnvironments are

blended together according to the relative positioning of the listener within the transition

zone and the individual settings of the environments.

Figure 19. Audio Transition Zone.

Once it is determined that the listener is in a transition zone, the transitional effect

must be created. Since EAX effects are generated through numeric inputs to EAX

methods, performing a relative distance calculation on the numeric inputs for each of the

two individual gfAudioEnvironments creates the blended effect. For example, if the

listener is moving from one gfAudioEnvironment to another through a transition zone,

and has moved through 25% of the transition zone then the resulting numeric inputs to

EAX are calculated by simple mathematical averaging of 25% of the first

gfAudioEnvironment’s inputs with 75% of the second gfAudioEnvironment’s inputs.

The calculations for the blended acoustic effect utilize the

EAXListenerInterpolate function provided in EAX 3.0. Figure 19 shows the

gfAudioEnvironmentTransition method for setting the interpolated effect. Both

environments must be valid gfAudioEnvironments for transition effects to be applied.

This precludes setting an effect when a transition zone is created without two

corresponding gfAudioEnvironments.

void gfAudioEnvironmentTransition::SetTransitionEffect()
{
 if(!mEnv1 || !mEnv2) return; //ensure both environments valid

 EAXLISTENERPROPERTIES transProps; // for resulting properties
 EAXLISTENERPROPERTIES StartEAX3LP = GetEAXListenerProp(

63
 mEnv1->GetEnvironmentType());

 EAXLISTENERPROPERTIES FinishEAX3LP = GetEAXListenerProp(
 mEnv2->GetEnvironmentType());
 EAX3ListenerInterpolate(&StartEAX3LP, &FinishEAX3LP,
 GetTransitionRatio(), &transProps, true);
 g_gfListener->SetEnviron(transProps);
}

Figure 20. SetTransitionEffect Method.

First, the numeric parameters of each environment are extracted and provided to

the EAXListenerInterpolate method with a ratio of relative distance moved

through the zone. The amount of distance moved through the zone is obtained through

the GetTransitionRatio() method, which uses gfAudioEnvironment environment

shape center positions, gfAudioEnvironmentTransition shape center positions, and

distances from the listener position to each of these points in determining what ratio of

transition zone has been crossed and in which direction. Finally, the newly calculated

numeric inputs are provided to the gfListener class to set a blended acoustic effect for the

portal environment.

6. gfAudioEnvironmentManager

The gfAudioEnvironmentManager class is responsible for maintaining an

accurate spatial relationship between the listener and all of the sounds in the environment.

This class if instantiated constantly monitors the listener positions and compares it to the

location of all sounds, whether statically positioned or dynamically updated. At a user

prescribed rate, calculations of relative positions result in the setting of occlusion,

obstruction, or exclusion effects for each individual sound. Additionally, the

environment setting for the listener is automatically updated as the location of the listener

moves through gfAudioEnvironments. The gfAudioEnvironmentManager class requires

the presence of at least one gfAudioEnvironment for automatic processing of

environmental effects, including audio environments and transition zones.

The primary effect of the gfAudioEnvironmentManager class resides in the

Update() method, periodically calculates the actual positioning of the listener and sounds

in the environment. Figure 20 depicts a small portion of the Update() method with

pseudo-code in appropriate places. Occlusion, obstruction and exclusion are effects

64

applied to each sound depending on whether the position of those sounds is within

eyesight of the listener and on whether the listener and the sound reside in the same or

different gfAudioEnvironments. If the listener and the sound exist in the same audio

environment, they can be considered to be in the same room. If they reside in different

audio environments, they are considered to be in different rooms. The position

associated with a sound does not require the presence of a visible object. First, the

SetListenerEnvironment() method determines what reverberation setting must

be applied to the listener’s global environment. Then, each sound in the environment is

screened against the following criteria:

• The sound is playing

• The sound is looping

• The sound is not positioned relative to the listener

SetListenerAudioEnvironment();
CheckSounds();
if(SoundObjectList->GetNum() > 0)
{
 for(int i = 0; i < SoundObjectList->GetNum(); i++)
 {
 mTempSound = (gfSoundObject*)SoundObjectList->Get(i);
 if(!mTempSound->IsRelative() && (mTempSound->IsPlaying() ||
 mTempSound->IsLooping()))
 {
 mTempSound->GetPosition(soundPos);
 mTempAudEnv = GetSoundObjectAudioEnvironment();
 bool hit = gfGetLOS(listenerPos, soundPos);

 // in same audio environment and not obstructed - no effects
 if(hit && (mListenerEnv == mTempAudEnv))
 {
 Remove effects
 }

 // excluded - hit but not in same environment
 else if(hit && (mListenerEnv != mTempAudEnv))
 {
 Remove obstruction and occlusion
 Set exclusion effect
 }
 // obstructed - not hit but in same environment
 else if(!hit && (mListenerEnv == mTempAudEnv))
 {
 Remove exclusion and occlusion
 Set obstruction effect
 }

 // occluded - not hit and not in same environment
 else if(!hit && (mListenerEnv != mTempAudEnv))
 {

65
 Remove exclusion and obstruction effect

 Set occlusion effect
 }
 }
 }

Figure 21. Portion of gfAudioEnvironmentManager Update() Method.

The purpose for screening out sounds that are set as relative to the listener is that

these sounds are generally placed in close proximity to the listener to simulate such

sounds as footsteps or the sound of a weapon fired by the listener. Since these sounds are

generally positioned closely to the listener, effects such as obstruction and occlusion do

not apply - there are extremely few cases where the sound of the listener’s footsteps will

be in a different audio environment than the listener’s ears. To reduce processing and

CPU overhead, these sounds are eliminated from obstruction, occlusion and exclusion

Sound within eyesight
of listener

Sound and listener in
same audio environment

No effect

Sound within eyesight
of listener

Sound and listener in
different audio
environments

Exclusion Although within eyesight, the sound
is outside the listener’s audio
environment.
 Example: listener in a room and the
sound is in the hallway outside the
room, but the position of the sound
is visible to the listener
Result: Listener receives direct path
sound energy but no reverberated or
reflected sound energy

Sound not within
eyesight of listener

Sound and listener in
same audio environment

Obstruction Although the sound and listener are
in the same environment, the sound
position can not be seen by the
listener
Example: Both listener and sound
in a room, but an object is between
them precluding the listener from
seeing the sound’s position
Result: Listener does not receive
any direct path sound energy, only
reverberated or reflected sound
waves

Sound not within
eyesight of listener

Sound and listener in
different audio
environments

Occlusion The listener cannot see the sound’s
position and they are in different
audio environments.
Example: Listener in one room and
sound in another, without a portal in
direct LOS between listener and
sound positions
Result: Listener receives neither
direct path reflected sound energy;
only muffled sound energy
transmitted through separating
medium is heard

Table 2. Criteria for Determining EAX Effect.

66

effects processing. Once the list of sounds is screened, each sound’s position is used to

determine:

• Whether the sound’s position is within eyesight of the listener, and

• Whether the sound and listener are in the same or different audio
environments.

Table 2 shows the criteria for which type of effect (obstruction, occlusion or

exclusion) to set for each remaining sound.

7. gfNetVoice
The gfNetVoice class is responsible for adding live voice to a virtual environment

in the case where multiple players in the shared virtual world are distributed, precluding

the use of the Ausim3D GoldServe for live voice streaming. gfNetVoice depends on the

presence of a DirectPlay network instance for its data transportation between peers.

The DirectPlay network connection is created in a gfNetwork class, which is part of the

core gfLib development package. Establishment of the DirectPlay network, in the

gfNetwork class, was placed in the core library for two reasons:

• A network for data communications may be required in certain gfLib
applications even without the need for voice communications. If the
gfNetwork class was part of the gfAudio library, application developers
would be required to link yet another library in with their software when a
major portion of the gfAudio library functionality was not required.

• Developer-derived networking classes, which would add functionality to
gfNetwork, would also require the presence of the gfAudio library when
gfAudio functionality was not required

Even though its networking “under-layer” is present in a different library,

gfNetVoice accomplishes live streaming voice by creating a peer-to-peer voice session

over the underlying network connection. The underlying network connection may also

be used for data and state information passing between participants. This model,

separating the network connection from the voice connection, is also the standard model

used in VoIP applications. For example, JVOIP, a spatialized VoIP framework library

used to add live voice to virtual environments, uses an Real-Time Transport Protocol

(RTP) network connection as the data transport layer below the VoIP connection used for

the streaming voice.

67

The gfNetVoice voice session is created as a peer-to-peer voice session. Each

session has a host, which can be a different node in the network than the gfNetwork host.

Both DirectPlay networks and DirectVoice voice sessions can be configured in two

ways, either peer-to-peer or client-server. In client server configurations, all data and

voice transmissions pass through a central server application and host machine. For live

voice, this adds a considerable amount of latency in the voice signal, and precludes

utilization. Because the natural selection for the voice session is peer-to-peer, an

equivalent mode was selected for the DirectPlay network.

The host in the voice session is responsible for creating an

IDirectVoicePlayServer object and a session description, DVSESSIONDESC. The

session description is used to set parameters of the voice session; the most important

parameter is the compression type used for converting the voice signal into binary data

fro transmission over the DirectPlay network. Figure 21 depicts the session host setup.
if(FAILED(hr = CoCreateInstance(CLSID_DirectPlayVoiceServer, NULL,
 CLSCTX_INPROC_SERVER, IID_IDirectPlayVoiceServer,
 (LPVOID*) &voiceServer)))
. . .
if(FAILED(hr = voiceServer->Initialize(g_Peer, ServerMessageHandler,
(void*)this, 0, 0)))

ZeroMemory(&SessionDesc, sizeof(DVSESSIONDESC));
SessionDesc.dwSize = sizeof(DVSESSIONDESC);
SessionDesc.dwFlags = DVSESSION_NOHOSTMIGRATION;
SessionDesc.dwSessionType = DVSESSIONTYPE_PEER;
SessionDesc.dwBufferQuality = DVBUFFERQUALITY_DEFAULT;
SessionDesc.guidCT = DPVCTGUID_ADPCM;
SessionDesc.dwBufferAggressiveness = DVBUFFERAGGRESSIVENESS_DEFAULT;

if(FAILED(hr = voiceServer->StartSession(&SessionDesc, 0)))
. . .

Figure 22. gfNetVoice Host Setup.

Both the host and the clients must connect to the voice session. While Figure 21

depicts source code found only in the host, Figure 22 shows both host and client

construction of an IDirectPlayVoiceClient object. Additionally, two DirectVoice

structs, DVSOUNDDEVICECONFIG and DVCLIENTCONFIG, set parameters for the host

or client machine’s sound card for recording, playback, window focus, and threshold

volume. Threshold volume is used to start a recording on either the host or client. To

preclude flooding the network with voice packets when no voice is present but

68

background sounds are heard, the threshold level can be modified to require a certain

volume at the microphone before recording, compression and transmission commences.

if(FAILED(hr = CoCreateInstance(CLSID_DirectPlayVoiceClient, NULL,
 CLSCTX_INPROC_SERVER,
 IID_IDirectPlayVoiceClient,
 (LPVOID*) &voiceClient)))
. . .

if(FAILED(hr = voiceClient->Initialize(g_Peer, ClientMessageHandler,
(void*)this, 0, 0)))

. . .

gfWindow *win = (gfWindow*)WinList->Get(0);
ZeroMemory(&SoundDeviceConfig, sizeof(DVSOUNDDEVICECONFIG));
SoundDeviceConfig.dwSize = sizeof(DVSOUNDDEVICECONFIG);
SoundDeviceConfig.dwFlags = DVSOUNDCONFIG_AUTOSELECT;
SoundDeviceConfig.guidPlaybackDevice = DSDEVID_DefaultPlayback;
SoundDeviceConfig.lpdsPlaybackDevice = pDS;
SoundDeviceConfig.guidCaptureDevice = DSDEVID_DefaultCapture;
SoundDeviceConfig.lpdsCaptureDevice = NULL;
SoundDeviceConfig.hwndAppWindow = (HWND)win->GetGZWindow()->getHandle
SoundDeviceConfig.lpdsMainBuffer = NULL;
SoundDeviceConfig.dwMainBufferFlags = 0;
SoundDeviceConfig.dwMainBufferPriority = 0;

ZeroMemory(&ClientConfig, sizeof(DVCLIENTCONFIG));
ClientConfig.dwSize = sizeof(DVCLIENTCONFIG);
ClientConfig.dwFlags = DVCLIENTCONFIG_AUTOVOICEACTIVATED |
 DVCLIENTCONFIG_AUTORECORDVOLUME | DVCLIENTCONFIG_MUTEGLOBAL |
 DVCLIENTCONFIG_ECHOSUPPRESSION ;
ClientConfig.lRecordVolume = DVRECORDVOLUME_LAST;
ClientConfig.lPlaybackVolume = DVPLAYBACKVOLUME_DEFAULT;
ClientConfig.dwThreshold = DVTHRESHOLD_UNUSED;
ClientConfig.dwBufferQuality = DVBUFFERQUALITY_DEFAULT;
ClientConfig.dwBufferAggressiveness = DVBUFFERAGGRESSIVENESS_DEFAULT;
ClientConfig.dwNotifyPeriod = 0;

if(FAILED(hr = voiceClient->Connect(&SoundDeviceConfig, &ClientConfig,
DVFLAGS_SYNC)))
. . .

Figure 23. gfNetVoice Client Connection Source Code.

After all parameters are set, the client connects to the voice server and the voice

session is commenced. DirectVoice supports a voice session with up to sixty-four

participants. However, it would be near impossible to discern sixty-four voices

simultaneously speaking in an environment. Additionally, sixty-four clients would

generate such a significant amount of voice data packets that the network would be

saturated to the point of being unusable. However, in many scenarios involving military

69

virtual environment training systems, where two to ten participants train together,

gfNetVoice is fully capable of providing live voice to all virtual environment users.

The gfNetVoice class also contains functionality to provide for the following:

• Spatialized voice - gfNetVoice can spatialize each individual voice in
three dimensions. Spatialization is accomplished in much the same way as
in gfSoundObject, through creation of IDirectSound3Dbuffers for each
voice client and positioning those buffers as desired.

• Occlusion, obstruction and exclusion - gfNetVoice permits setting of
EAX effects for individual voices in the virtual environment

• Minimum and maximum voice distance - gfNetVoice allows for setting of
minimum and maximum voice distances, which can be used to alter the
distance a voice is heard in the virtual environment

The gfNetVoice class is indirectly tied to the gfListener class. The gfListener is

responsible for sending voice position information over the network for its respective

user in the virtual environment. Every time the gfListener position is updated, a new

voice position packet is generated and transmitted to all users in the shared virtual world.

In this manner, voices are automatically tethered to listeners (mouths tethered to ears).

C. AUSERVERLIB

1. auSystem

The auSystem class is designed as an overall timer and administrator between all

other classes, responsible for sending internal messages between classes, internal timing

for managing updates to the GoldServe, and permitting developers to adjust timing as to

not overload the GoldServe with updates faster than the GoldServe system will allow

before latency in positioning occurs.

2. auBase
The auBase class is used as a base class for all derived au classes. It is derived

from Gizmo3D classes, which permits instantiations of auBase-derived classes to be

considered as message senders or receivers for internal message passing. Several

methods are included to permit developers to determine actual class type when auBase-

derived classes are used as objects in internal messages.

70

3. auSource

The auSource class represents an Ausdim3D GoldServe source. Two classes are

derived from auSource that are used by developers - auSound and auChannel - which

correspond to the two types of sources that the GoldServe operates with: sources created

from pre-recorded wav files (auSound) and sources relating to live input channels

(auChannel). Any source can be positioned in three dimensions, and can have source-

specific rolloff attenuation settings. Volume or gain can be adjusted for any source.

Unlike DirectSound3D, where volume can only be reduced from the original recording

level, auSources permit volume amplification beyond the original recorded level. Rolloff

is a source-specific parameter for auSources, and can be adjusted for each source

independently. Position, volume and rolloff for auChannels and auSounds are set

through methods in the auSource class.

Like in DirectSound3D, sources can either be spatialized or non-spatialized.

Non-spatialized sources for the GoldServe can be thought of as 2D sounds in

DirectSound3D. For non-spatialized sources, programmers have the ability to stereo

pan the source to the left or the right of the listener. However, no spatialization

processing is conducted and the source will appear to move automatically with the

listener. An example of this is the footsteps, discussed as an example of 2D sounds in

DirectSound3D. Additionally, when a sound is not spatialized, no externalization will

be possible. Externalization is the perception to the user that the sound source originates

from a position external to the listener. When a sound is panned, although it can appear

to emanate to the left or the right of the listener, it will not appear to emanate from a left

or right position displaced form the user.

The auSource class handles source directivity for auChannels and auSounds.

Directivity of a sound is achieved by attenuating the radiation of a source at various

angular measurements around the source (see Figure 23.)

71

Figure 24. auSource Radiation Pattern Examples (www.ausim3d.com).

All other functionality of auChannels and auSounds is found in the respective

individual classes.

4. auListener
The auListener class, like the gfListener, represents the ears of the observer in a

virtual environment. Like in DirectSound3D, the listener’s position and orientation can

be constantly updated in the virtual environment, providing an auditory experience of

moving through the virtual world. The GoldServe Audio Localizing Server system used

to develop the auServerLib software is capable of serving up to four concurrent listeners

within an application, or single listeners supporting up to four simultaneously running

separate applications. AuListeners are identified by name or by identification number.

Listener identification numbers are created sequentially (starting with zero) as listeners

are instantiated within an application.

The auListener class, unlike DirectSound3D and DirectVoice, integrates live

voice with the listener. A portion of the auListener Config() method is shown in

Figure 24.

 int mode = Atrn_METER | _VERBOSE_;
 if(cre_init(Atrn_BMP1, mID|_ORATOR_ , 32, mode) < Ok)

Figure 25. auListener Config() Method.

72

http://www.ausim3d.com/

The mode variable sets the standard distance for rolloff calculations through the

setting of the Atrn_METER flag. The cre_init method creates the listener (the

Atrn_BMP1 flag is used to identify the type of operating software on the GoldServe; the

GoldServe software is developed to operate on several different Ausim3D and legacy

systems.) The mID variable represents the listener identification number. The

ORATOR flag creates a live input source for the listener’s voice that is continually re-

positioned as the listener position is updated. Additionally, the listener is blocked from

hearing input from the source identified as his or her own voice. All other listeners in the

virtual environment will hear the voice signal. Additional functionality regarding the live

input for the listener’s voice includes:

• Voice volume. The global volume of any listener’s voice input can be
modified. If modified, the volume change will affect all other listener’s
perceptions of the volume.

• Voice radiation pattern. As with auSources, the radiation pattern of the
live voice input can be modified for directivity (see Figure 23). This is
useful in modeling the effect of a voice when the listener changes
orientation. A live voice (tethered to a visual object, such as an avatar in
the virtual environment) would sound different (generally louder) when
the avatar is facing the listener than when the avatar is facing away from
the listener (attenuated).

• Mouth offset. Our mouths and our ears are displaced from each other. If
listeners were positioned in close proximity to one another, we would be
able to discern the separation of the mouth (as a sound source) from our
ears (as a reception source). To model this separation, mouth offset is
used to place the live input voice source at a specified distance and
orientation from the reception (ears) location.

• Voice input channel. This is a utility method for prescribing which of the
external live input connections will service the microphone for the voice
input of the listener.

In some circumstances, the volume of a listener’s voice may not be of the same

intensity for all other listeners in the virtual environment. For example, three users

(listener A, listener B, listener C) navigate through a virtual environment, with two

(listener A and listener B) being positioned inside the same room, and the third (listener

C) positioned outside the room. Between listener A and listener B, voice volumes should

be unaffected. However, the volume of the voice of listener A as heard by listener C

should be attenuated (in addition to normal distance attenuation) due to occlusion, much

73

like in DirectSound3D. Figure 25 displays a method in auListener that permits setting

individual volumes for a listener’s voice to any other listener in the virtual environment,

mimicking the occlusion and obstruction effects found in EAX. The IdAndGain struct

permits the paring of a single listener identification number with a volume level. All

other listeners in the virtual environment hear the voice volume as if it were unadjusted.

Additionally, virtual environment conditions may require that any single voice be

directed only to a single exclusive listener. This can model radio communications where

not all participants in a shared virtual environment hear the respective listener’s voice;

only the specified listener receives the voice audio, spatialized or non-spatialized. Figure

26 shows the auListener SetExclusive method for obtaining this functionality. Notice

that setting a voice exclusive to a listener requires two operations; first, the voice volume

is set to zero for all listeners in the virtual world (effectively muting the voice) and then

the volume is adjusted to desired level for the specified listener.
bool auListener::SetVolumeForListener(auListener* otherListener, float dB)
{
 . . .
 IdAndGain temp;
 temp.id = otherListener->GetID();
 temp.dB = dB;

 if(cre_define_source(mID, AtrnPATHgain, sizeof(IdAndGain), &temp) < 0)
 {
 . . .
 return FAILURE;
 }
 . . .
 return SUCCESS;
}

Figure 26. auListener SetVolumeForListener Method.

bool auListener::SetExclusive(auListener* listener)
{
. . .
 IdAndGain temp;
 temp.id = ALL_HEADS;
 temp.dB = PATH_GAIN_DISABLE_PATH;

 if(cre_define_source(mID, AtrnPATHgain, sizeof(IdAndGain), &temp) < 0)
 {
 . . .
 return FAILURE;
 }

 temp.id = listener->GetID();
 temp.dB = 0.0f;

74
 if(cre_define_source(mID, AtrnPATHgain, sizeof(IdAndGain), &temp) < 0)

 {
 . . .
 return FAILURE;
 }
 return SUCCESS;
}

Figure 27. auListener SetExclusive Method.

5. auSound
An auSound instance represents a sound in the virtual environment in the form of

a pre-recorded wav file. Sounds can be positioned in three dimensions, radiate in

prescribed patterns, and attenuate with specific rolloff. Since these capabilities exist for

both auSounds and auChannels, the code and functionality exists in the auSource class,

the parent of both auSound and auChannel.

To hear a sound, it can either be played or looped. Looping a sound refers to a

continuous playing of the wav file from start to finish over and over until a termination

signal is sent. Figure 27 shows how to play or loop a sound. The only difference

required to distinguish whether a sound is played or looped is which flag to set when

calling the cre_ctrl_wave method; WaveCTRL_STRT indicates the sound should be played

one time from start to completion, and WaveCTRL_LOOP indicates the sound should be

continuously looped until termination.

bool auSound::Play()
{
 . . .
 if(cre_ctrl_wave(mSourceID, mWav, WaveCTRL_STRT, NULL) < 0)
 {
 . . .
 return FAILURE;
 }
 cre_update_audio();
 return SUCCESS;
}

bool auSound::Loop()
{
 . . .
 if(cre_ctrl_wave(mSourceID, mWav, WaveCTRL_LOOP, NULL) < 0)
 {
 . . .
 return FAILURE;
 }
 return SUCCESS;
}

Figure 28. auSound Play() and Loop() Methods.

75

In certain situations, it may be desirable to link a sound to a listener in the virtual

environment. Since the listener represents the observer or participant in the environment,

linking a sound to the listener essentially links a sound to the participant. This is useful

in the case of footsteps, mentioned previously as a sound that will continuously move

through the virtual environment with the observer. Figure 28 shows how to link a sound

with a listener. The name of the listener is stored for later retrieval if necessary.

Like voices, sound volume can also be set individually for individual listeners, or

can be set exclusive to a single listener in the virtual environment. To see an explanation

of either function, see the auListener section or Appendix B.

bool auSound::LinkToListener(auListener* listener)
{
 mLinkListener = listener;
 isLinked = true;
 if(!isConfigured) return FAILURE;

 if(cre_define_source(mSourceID, AtrnHEADlink, listener->GetID(),
 NULL) < 0)
 {
 . . .
 isLinked = false;
 return FAILURE;
 }
 strcpy(mLinkName, listener->GetName());
 return SUCCESS;
}

Figure 29. auSound LinkToListener Method.

6. auChannel
The auChannel class represents a live input to the Ausim3D GoldServe. In this

architecture, the live inputs represent the live voices of the participants in the shared

virtual world. However, auChannels could be instantiated to add live audio inputs to a

virtual environment such as radio transmissions, external streaming sounds, or any

continuous audio signal.

Since much of the source code is very similar to that found in auListener or

auSound, no source code is listed here. The auChannel class contains the necessary

methods to permit:

76

• Linking live input channels with a listener. As with auSound, when an
auChannel is linked to a specific auListener, the channel is automatically
positioned with the auListener and updated accordingly.

• Setting the channel volume for specified listeners. Like the auListener
SetVolumeForListener() method, individual volume settings may be made
for each listener in the virtual environment.

• Setting the channel exclusive to a listener. A live input channel may be
“routed” to only a single listener in the virtual environment.

The third capability mentioned, the ability to set a channel exclusive to a listener,

is critical to the audio architecture prescribed in this thesis. In the scenario where

multiple users connect to a networked, shared virtual environment and the participants

are physically co-located, the architecture implements the Ausim3D GoldServe for live

voice and uses the individual client PCs to generate the environment audio. To combine

the individual audio from each user’s machine with the live 3D voice supplied by the

GoldServe, the individual user’s audio, generated by the client PC’s sound card using

DirectSound3D and EAX, is routed to the GoldServe as two live input channels, one

for each stereo channel. Using the ability to set any channel exclusive to a listener, these

live inputs are routed only to the respective listener in the virtual environment. Voice

audio is layered over the live input, thereby providing a live voice capability to an audio

environment. Since the Audim3D GoldServe is not currently capable of providing for

environmental effects such as reverberation, occlusion and obstruction, using

DirectSound3D and EAX on each client machine creates those necessary effects

while the exceptionally low-latency live input capability of the GoldServe processes live

voice. The architecture blends the most beneficial aspects of DirectSound3D, EAX

and hardware capability to provide the most immersive, interactive audio environment

available.

7. auNotify

The auNotify class is a utility class used to print text and data, generally to a

console window as part of an application. Developers can use one of five notification

levels to determine the level of text output.

77

8. auTools

The auTools class contains methods to set global variables in the GoldServe audio

environment, such as global rolloff factors and global atmospheric absorption rates

affecting all sounds and live input channels. Additionally, the auTools class contains

utility methods used by the auListener, auSound and auChannel classes to provide

sequential source numbers used by the GoldServe for source and system management.

9. Summary
The auServerLib implementation’s primary purpose is to permit the inclusion of

live, low-latency, spatialized voice in a networked virtual environment. However, the

software library’s secondary purpose was to encapsulate the GoldServe’s native

programming API (CRE_TRON) into a useful programming suite of tools for use in

other applications as well. The auServerLib can be used to create a complete, stand-alone

auditory environment or can be used exclusively as the audio suite for a virtual

environment. The main reason for not choosing the Ausim3D GoldServe for all audio in

a virtual environment is its inability to provide effects, such as occlusion, obstruction,

exclusion and reverberation, currently incorporated by EAX. Ausim3D is currently

developing a programming API that will incorporate all aspects of environmental

acoustics.

78

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY
This thesis has provided guidance and an example of an audio architecture

capable of serving various configurations of virtual environment training systems. From

single, independent users to networked, multi-user shared virtual environments with live

streaming voice, this architecture is capable of delivering a fully immersive, interactive,

and high quality audio capability for inclusion in virtual environment training systems

and simulators. The software component of this architecture is capable of operating on

any standard PC and is developed from free or public-domain source code. The hardware

component, the Ausim3D GoldServe, is COTS technology immediately available for

utilization.

B. RECOMMENDATIONS
The architecture recommended by this thesis for use in virtual environment

training systems is meant to support three virtual environment configurations:

• Single, independent user

• Multiple users, live voice not required

• Multiple users, physically co-located, live voice required

• Multiple users, physically distributed, live voice required

79

For single, independent users, a combination of DirectSound3D and EAX

software operating on a single PC can provide the types of sounds and sound effects

necessary to accurately simulate most acoustic environments found in military training

scenarios. DirectSound3D encompasses the functionality to fully spatialize all sounds,

providing dynamic distance attenuation, rolloff, volume and frequency manipulation, and

source directivity. Since sound is interactive with the environment in which it is played,

EAX provides the ability to model sound interaction with the physically modeled

graphical environment to create effects such as reverberation, occlusion, obstruction, and

exclusion. Without these effects, sounds in an environment will not appear to be realistic

nor will they sound as they do in the real world. As seen in the two task analyses of

military training evolutions, acoustic cues may be critical elements of a task. If a virtual

environment is to create a synthetic simulation of a training environment, the production

of realistic audio cues, through the integration of DirectSound3D and EAX, is a

necessary element and component of the virtual environment training system.

When multiple users share a virtual environment where no live voice is required,

the above configuration is still applicable. Because DirectSound3D is tightly

integrated with DirectPlay within the DirectX development kit, multiple-user acoustic

environments can be developed for up to sixty-four users.

For the two configurations mentioned thus far, where virtual environment audio is

generated local to the respective user’s machine and sound card, the quality and

capability of the sound card is paramount. During development and testing of the

implementation described in this thesis, Creative Technologies Audigy sound cards

where utilized on all systems. The Audigy is the latest generation sound card released

by Creative, and is widely considered as one of the best PC sound cards available today.

Although DirectSound3D will work on just about every PC sound card commercially

available, EAX requires a sound card supporting hardware acceleration through

onboard hardware buffering. Additionally, since both EAX and the Audigy sound

card are both produced by Creative, the Audigy is specially designed to support all

EAX capabilities and provides the maximum number of hardware-accelerated buffers

of most commercially available sound cards.

For multiple-user, networked virtual environments requiring live voice, there are

two implementations of live voice that can be used. For shared virtual environment

configurations where multiple users operate on individual machines but those machines

are physically co-located, the Ausim3D GoldServe is by far the superior choice for live

voice implementation. With considerably lower latency in voice processing than VoIP,

the GoldServe offers the best solution for adding live voice to any multiple user virtual

environments. Most deployed multiple user training systems will be confined to a small

space or area for utilization, and the GoldServe equipment’s size and footprint are

extremely small. Integrating the superior sound and sound effects capabilities of

DirectSound3D and EAX found in the single-user configuration with the low-latency

80

voice quality of the GoldServe offers the best audio configuration when users are

physically co-located.

In those cases where multiple users must be widely distributed, VoIP provides the

live voice component. Although VoIP faces critical voice latency issues, when users are

distributed over a wide area, there are no other effective live voice implementations

available. For deployed training systems, where even simple telephone implementations

of live voice are architecturally impossible, VoIP is the only solution. DirectVoice is

the only known VoIP application that fully supports spatialized live voice, and is the

implementation recommended by this thesis.

C. FUTURE WORK

Although this study produced an audio architecture and implementation capable

of providing a high quality auditory environment for virtual training systems, there are

two areas of further research that will vastly improve the architecture’s capability to

provide an even better acoustic environment and live voice capability for distributed

virtual environments.

First, while EAX is an extremely capable API for creating sound effects such as

reverberation, occlusion, and obstruction, it is still somewhat limited in that it does not do

actual acoustic modeling of the environment. As a parameter-based sound effects API,

developers are required to manipulate variables to achieve desired sound effects, many

times through trial and error, a pain-staking and time-consuming process. With five

high-level parameters and over 15 low-level parameters, the number of permutations of

variable changes and modifications in EAX possible to achieve a specific effect can be

overwhelming. Considering that these calculations and manipulations must occur not just

once for a virtual environment, but for every position a user could find himself or herself

in the virtual environment, a realistic auditory environment in a complex virtual world

may take months to program and develop. For true acoustic modeling, a geometry-based

approach is necessary. Geometry-based acoustic modeling refers to modeling the

acoustics and audio characteristics of an environment based on the actual virtual

geometry of that environment, much akin to graphical ray tracing in the visual sense.

81

Sounds played in the environment will interact with the visual geometry to naturally, and

automatically, produce reverberation, occlusion and obstruction effects. Scenario

developers for virtual environment training systems will avoid the time-consuming

process of manipulating numerous variables to achieve realistic sound effects. Instead,

an algorithm would produce the effects based on information provided by the developer

as to the characteristics of the environment. This information would only have to be

provided once, as compared to the multiple iterations of calculations required in

parameter-based sound effects. Research into developing a geometry-based acoustic

modeling capability will not only vastly improve the quality of the effects, but also

significantly reduce the production time for high quality auditory environments for

virtual training systems.

Second, alternatives for live, low latency streaming voice must be developed.

While the Ausim3D GoldServe provides an exceptionally low latency streaming voice

capability, the requirement to be physically co-located with the hardware and the other

participants in the virtual environment preclude its universal implementation. While

many training systems, and most of the deployed systems, will in fact not suffer due to

this limitation, there are many other virtual training systems under development designed

to provide multiple-user or team training when participants or team members are

distributed over large areas. One of the great benefits of virtual environments is their

ability to place multiple individuals in a shared world even if they are not in a shared

location to conduct simulations or training. Until a low latency solution for live voice is

discovered, these distributed virtual environments will either be faced with suffering from

a high latency live voice system or nor live voice at all. Neither are optimum, and further

research and development into an IP-based, low latency live voice capability is necessary.

82

APPENDIX A. GFAUDIO DOCUMENTATION

A. GFAUDIOENVIRONMENT CLASS REFERENCE

1. Public Types
• enum gfEnvironEnum { GF_GENERIC = 0, GF_PADDEDCELL, GF_ROOM,

GF_BATHROOM, GF_LIVINGROOM, GF_STONEROOM, GF_AUDITORIUM,
GF_CONCERTHALL, GF_CAVE, GF_ARENA, GF_HANGAR,
GF_CARPETEDHALLWAY, GF_HALLWAY, GF_STONECORRIDOR, GF_ALLEY,
GF_FOREST, GF_CITY, GF_MOUNTAINS, GF_QUARRY, GF_PLAIN,
GF_PARKINGLOT, GF_SEWERPIPE, GF_UNDERWATER, GF_DRUGGED,
GF_DIZZY, GF_PSYCHOTIC }

 gfEnvironEnum - enum representing EAX effects.

• enum gfMaterialEnum { GF_NONE = 0, GF_WINDOW, GF_DOOR, GF_WOOD,
GF_BRICK, GF_STONE }

2. Public Methods
• gfAudioEnvironment (gfEnvironEnum environEnum=GF_GENERIC, gfShape

*shape=NULL, const char *name=0)
Constructor.

• virtual ~gfAudioEnvironment ()
Destructor.

• virtual void SetEnvironmentType (gfEnvironEnum environEnum)
SetEnvironmentType - sets the environment type.

• gfEnvironEnum GetEnvironmentType ()
GetEnvironmentType - gets the environment enum.

• virtual void SetEnvironmentShape (gfShape *shape)
SetEnvironmentShape - sets environment shape.

• gfShape * GetEnvironmentShape ()
GetEnvironmentShape - returns pointer to area shape object.

• bool InsideEnvironment (sgVec3 pos)
InsideEnvironment - indicates whether position is inside environment or not.

• void Location (sgVec3 pos)
Location - moves the environment shape.

• float * GetLocation ()
GetLocation - returns the center location of the shape.

83

• void SetEnvironmentMaterial (gfMaterialEnum material)

SetEnvironmentMaterial - sets material settings for the environment.

• gfMaterialEnum GetEnvironmentMaterial ()
GetEnvironmentMaterial.

3. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

4. Detailed Description

Class: gfAudioEnvironment
Function: class to store coordinates, type, and size of one audio environment

5. Member Enumeration Documentation
• enum gfAudioEnvironment::gfEnvironEnum

gfEnvironEnum - enum representing EAX effects.

Enumeration values:

GF_GENERIC
GF_PADDEDCELL
GF_ROOM
GF_BATHROOM
GF_LIVINGROOM
GF_STONEROOM
GF_AUDITORIUM
GF_CONCERTHALL
GF_CAVE
GF_ARENA
GF_HANGAR
GF_CARPETEDHALLWAY
GF_HALLWAY
GF_STONECORRIDOR
GF_ALLEY
GF_FOREST
GF_CITY
GF_MOUNTAINS
GF_QUARRY
GF_PLAIN
GF_PARKINGLOT
GF_SEWERPIPE
GF_UNDERWATER
GF_DRUGGED
GF_DIZZY
GF_PSYCHOTIC

84

• enum gfAudioEnvironment::gfMaterialEnum

Enumeration values:

GF_NONE
GF_WINDOW
GF_DOOR
GF_WOOD
GF_BRICK
GF_STONE

6. Constructor and Destructor Documentation
• gfAudioEnvironment::gfAudioEnvironment (gfEnvironEnum environEnum =

GF_GENERIC, gfShape * shape = NULL, const char * name = 0)
o Constructor.
o Function: Constructor
o Purpose: creates new gfAudioEnvironment and adds it to global list
o Parameters:

� name - name for environment
� environEnum - gfAudioEnvironment enumeration for environment

type

• gfAudioEnvironment::~gfAudioEnvironment () [virtual]
o Destructor.
o Function: Destructor
o Purpose: Destroys this gfAudioEnvironment

7. Member Function Documentation
• gfMaterialEnum gfAudioEnvironment::GetEnvironmentMaterial () [inline]

o GetEnvironmentMaterial.

• gfShape* gfAudioEnvironment::GetEnvironmentShape () [inline]
o GetEnvironmentArea - returns box with area coordinates.

• gfEnvironEnum gfAudioEnvironment::GetEnvironmentType () [inline]

o GetEnvironmentType - gets the environment enum.

• float* gfAudioEnvironment::GetLocation () [inline]
o GetLocation - returns the center location of the shape.

• bool gfAudioEnvironment::InsideEnvironment (sgVec3 pos)

o InsideEnvironment.
o Function: InsideEnvironment
o Purpose: indicates whether gfPosition lies inside shape of environment or not
o Parameters:

85

� pos - the gfPosition to check inside/outside
o Returns:

� bool - TRUE = inside; FALSE = outside

• void gfAudioEnvironment::Location (sgVec3 pos)
o Locate - moves the environment shape.
o Function: Locate
o Purpose: locate an audio environment at a specified location
o Parameters:

� pos - the sgVec3 for the center position

• void gfAudioEnvironment::SetEnvironmentMaterial (gfMaterialEnum material)
o SetEnvironmentMaterial.
o Function: SetEnvironmentMaterial
o Purpose: sets the environment material for occlusion
o Parameters:

� material - the enumeration for the specified environment material
settings

• void gfAudioEnvironment::SetEnvironmentShape (gfShape * shape) [virtual]

o SetEnvironmentArea - sets environment sphere.
o Function: SetEnvironmentShape
o Purpose: sets the environment shape
o Parameters:

� shape - the shape object defining the shape of the environment

• void gfAudioEnvironment::SetEnvironmentType (gfEnvironEnum environEnum)
[virtual]

o SetEnvironment - sets the environment type.
o Function: SetEnvironmentType
o Purpose: sets the environment type
o Parameters:

� environEnum - the enumeration for the specified environment

8. Member Data Documentation
gfAudioEnvironment::GZ_DECLARE_TYPE_INTERFACE

The documentation for this class was generated from the following files:
gfaudioenvironment.h
gfaudioenvironment.cpp

B. GFAUDIOENVIRONMENTMANAGER CLASS REFERENCE
#include <gfaudioenvironmentmanager.h>

1. Public Methods
• gfAudioEnvironmentManager ()

86

Constructor.

• ~gfAudioEnvironmentManager ()
Destructor.

• const char * GetListenerEnv ()
GetListenerEnv - gets a handle to the current listener environment.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: gfAudioEnvironmentManager
Function: Class to manage setting environmental effects for the listener depending on listener
location within gfAudioEnvironments or gfAudioEnvironmentTransitions. Manages automatic
setting of obstruction, occlusion or exclusion settings for individual sounds and voices.

4. Constructor and Destructor Documentation
• gfAudioEnvironmentManager::gfAudioEnvironmentManager ()

o Constructor.
o Function: Constructor
o Purpose: creates new gfAudioEnvironment

• gfAudioEnvironmentManager::~gfAudioEnvironmentManager ()

o Destructor.
o Function: Destructor
o Purpose: destroys gfAudioEnvironmentManager

5. Member Function Documentation
• const char* gfAudioEnvironmentManager::GetListenerEnv () [inline]

o GetListenerEnv - gets a handle to the current listener environment.

6. Member Data Documentation
• gfAudioEnvironmentManager::GZ_DECLARE_TYPE_INTERFACE

The documentation for this class was generated from the following files:

• gfaudioenvironmentmanager.h
• gfaudioenvironmentmanager.cpp

87

C. GFAUDIOENVIRONMENTTRANSITION CLASS REFERENCE
#include <gfaudioenvironmenttransition.h>

1. Public Methods
• gfAudioEnvironmentTransition (gfAudioEnvironment *env1=NULL,

gfAudioEnvironment *env2=NULL, gfShape *shape=NULL, const char *name=NULL)
Constructor.

• virtual ~gfAudioEnvironmentTransition ()
Destructor.

• void SetAudioEnvironmentOne (gfAudioEnvironment *env)
SetAudioEnvironmentOne - sets first audio environment.

• void SetAudioEnvironmentTwo (gfAudioEnvironment *env)
SetAudioEnvironmentTwo - sets second audio environment.

• gfAudioEnvironment * GetAudioEnvironmentOne ()
GetAudioEnvironmentOne - gets first audio environment.

• gfAudioEnvironment * GetAudioEnvironmentTwo ()
GetAudioEnvironmentTwo - gets second audio environment.

• void SetAudioEnvironmentTransitionShape (gfShape *shape)
SetAudioEnvironmentTransitionShape - sets the shape.

• gfShape * GetAudioEnvironmentTransitionShape ()
GetAudioEnvironmentTransitionShape - gets the shape.

• bool InsideEnvironmentTransition (sgVec3 pos)
InsideEnvironmentTransition - checks whether pos is inside transition zone.

• void SetTransitionEffect ()
SetTransitionEffect - combines and morphs two EAX environments.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: gfAudioEnvironmentTransition

88

Function: class to store coordinates and type of two audio environments for morphing between
two audio reverb effects as listener moves between environments.

4. Constructor and Destructor Documentation
• gfAudioEnvironmentTransition::gfAudioEnvironmentTransition (gfAudioEnvironment

* env1 = NULL, gfAudioEnvironment * env2 = NULL, gfShape * shape = NULL, const
char * name = NULL)

o Constructor.
o Function: Constructor
o Purpose: creates new gfAudioEnvironmentTransition

• gfAudioEnvironmentTransition::~gfAudioEnvironmentTransition() [virtual]

o Destructor.
o Function: Destructor
o Purpose: destroys gfAudioEnvironmentTransition

5. Member Function Documentation
• gfAudioEnvironment* gfAudioEnvironmentTransition::GetAudioEnvironmentOne ()

[inline]
o GetAudioEnvironmentOne - gets first audio environment.

• gfShape* gfAudioEnvironmentTransition::GetAudioEnvironmentTransitionShape ()

[inline]
o GetAudioEnvironmentTransitionShape - gets the shape.

• gfAudioEnvironment* gfAudioEnvironmentTransition::GetAudioEnvironmentTwo ()

[inline]
o GetAudioEnvironmentTwo - gets second audio environment.

• bool gfAudioEnvironmentTransition::InsideEnvironmentTransition (sgVec3 pos)

o InsideEnvironmentTransition - checks whether pos is inside transition zone.
o Function: InsideEnvironmentTransition
o Purpose: indicates whether gfPosition lies inside shape of environment transition

or not
o Parameters:

• pos - the sgVec to check inside/outside
o Returns:

• bool - TRUE = inside; FALSE = outside

• void gfAudioEnvironmentTransition::SetAudioEnvironmentOne (gfAudioEnvironment
* env)

o SetAudioEnvironmentOne - sets first audio environment.
o Function: SetAudioEnvironmentOne

89
o Purpose: sets audio environment one

o Parameters:
• env - gfAudioEnvironment one

• void gfAudioEnvironmentTransition:: SetAudioEnvironmentTransitionShape (gfShape

* shape)
o SetAudioEnvironmentTransitionShape - sets the shape.
o Function: SetAudioEnvironmentTransitionShape
o Purpose: sets audio environment transition zone shape
o Parameters:

• shape - gfAudioEnvironmentTransition shape

• void gfAudioEnvironmentTransition::SetAudioEnvironmentTwo (gfAudioEnvironment

* env)
o SetAudioEnvironmentTwo - sets second audio environment.
o Function: SetAudioEnvironmentTwo
o Purpose: sets audio environment two
o Parameters:

• env - gfAudioEnvironment two

• void gfAudioEnvironmentTransition::SetTransitionEffect ()

o SetTransitionEffect - combines and morphs two EAX environments.
o Function: SetTransitionEffect
o Purpose: sets the transitional reverb effect if in a transition zone

6. Member Data Documentation
• gfAudioEnvironmentTransition::GZ_DECLARE_TYPE_INTERFACE

The documentation for this class was generated from the following files:

• gfaudioenvironmenttransition.h
• gfaudioenvironmenttransition.cpp

D. GFAUDIONET CLASS REFERENCE
#include <gfaudioglobal.h>

1. Public Methods
• gfAudioNet ()
• virtual ~gfAudioNet ()

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

90

3. Constructor and Destructor Documentation
• gfAudioNet::gfAudioNet ()
• gfAudioNet::~gfAudioNet () [virtual]

4. Member Data Documentation
• gfAudioNet::GZ_DECLARE_TYPE_INTERFACE

The documentation for this class was generated from the following files:

• gfaudioglobal.h
• gfaudioglobal.cpp

E. GFCUBE CLASS REFERENCE
#include <gfaudioenvironment.h>

1. Public Methods
• gfCube (float minX=0.0f, float maxX=1.0f, float minY=0.0f, float maxY=1.0f, float

minZ=0.0f, float maxZ=1.0f)
Constructor.

• ~gfCube ()
Destructor.

• void SetCube (float minX, float maxX, float minY, float maxY, float minZ, float maxZ)
SetCube - sets the coordinates for the environment cube.

• virtual void SetLocation (sgVec3 pos)
SetLocation - sets the location for the shape.

• bool Contains (sgVec3 pos)
Contains - determines whether position inside cube.

• void GetCenter (sgVec3 pos)
GetCenter - gets the center point of the cube.

• void Print ()

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: gfCube Function: class for cube audio shape - aligned on coordinate axes

91

4. Constructor and Destructor Documentation
• gfCube::gfCube (float minX = 0.0f, float maxX = 1.0f, float minY = 0.0f, float maxY =

1.0f, float minZ = 0.0f, float maxZ = 1.0f)
o Constructor.
o Function: Constructor
o Purpose: creates new gfCube
o Parameters:

� minX - environment cube minimum x coordinate
� maxX - environment cube maximum x coordinate
� minY - environment cube minimum y coordinate
� maxY - environment cube maximum y coordinate
� minZ - environment cube minimum z coordinate
� maxZ - environment cube minimum z coordinate

• gfCube::~gfCube ()
o Destructor.
o Function: Destructor
o Purpose: destroys gfCube

5. Member Function Documentation
• bool gfCube::Contains (sgVec3 pos) [virtual]

o Contains - determines whether position inside cube.
o Function: Contains
o Purpose: determine whether the gfPosition is contained in the shape
o Parameters:

� pos - the position to check for containment
o Returns:

� bool - TRUE = inside shape; FALSE = outside shape

o Implements gfShape.

• void gfCube::GetCenter (sgVec3 pos) [virtual]
o GetCenter - gets the center point of the cube.
o Function: GetCenter
o Purpose: determine the center point of the cube
o Parameters:

� pos - the position to fill in data

o Implements gfShape

• void gfCube::Print ()

o Function: Print

92
o Purpose: print the cubes coordinates

• void gfCube::SetCube (float minX, float maxX, float minY, float maxY, float minZ, float

maxZ)
o SetBox - sets the coordinates for the environment box.
o Function: SetCube
o Purpose: Creates a set of cube coordinates
o Parameters:

� minX - environment cube minimum x coordinate
� maxX - environment cube maximum x coordinate
� minY - environment cube minimum y coordinate
� maxY - environment cube maximum y coordinate
� minZ - environment cube minimum z coordinate
� maxZ - environment cube minimum z coordinate

• void gfCube::SetLocation (sgVec3 pos) [virtual]
o SetLocation - sets the location for the shape.
o Function: SetLocation
o Purpose: sets the center location for the cube
o Parameters:

� pos - the position of the center of the cube
o Implements gfShape

6. Member Data Documentation
• gfCube::GZ_DECLARE_TYPE_INTERFACE

Reimplemented from gfShape

The documentation for this class was generated from the following files:
• gfaudioenvironment.h
• gfaudioenvironment.cpp

F. GFLISTENER CLASS REFERENCE
#include <gfListener.h>

1. Public Methods
• gfListener (const char *name=0)

Constructor.

• ~gfListener ()
Destructor.

• void Position (gfPosition *pos)
Position - positions the listener.

• void SetObserver (gfObserver *obs)

93

SetObserver - sets gfObserver to tether with.

• void SetObserver (const char *name)
SetObserver - sets gfObserver to tether with (by name).

• void SetDopplerFactor (float value)
SetDopplerFactor - exaggerates doppler effect.

• void SetRolloff (float value)
SetRolloff - sets global rolloff.

• void SetVelocity (sgVec3 vel)
SetVelocity - velocity used in doppler effect.

• void SetVelocity (sgVec3 dir, float spd)
SetVelocity - velocity used in doppler effect.

• void SetEnviron (gfAudioEnvironment::gfEnvironEnum env)
SetEnviron - places listener in EAX environment using gfEnum.

• void SetEnviron (EAXLISTENERPROPERTIES props)
SetEnviron - places the listener in EAX environment using EAX's EAXLISTENERPROPERTIES struct.

• void SetEnvironSize (float size)
SetEnvironSize - sets the size of the room.

• void Shutdown ()
Shutdown - shuts down the listener.

• void CommitDeferredSettings ()
CommitDeferredSettings - commits all deferred settings.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Protected Methods
• void Config (void)

Config - configures listener.

• virtual gzVoid onNotify (gzNotifyMessage *message)
onNotify - internal messaging.

4. Protected Attributes

94

• LPDIRECTSOUNDBUFFER pDSB
• LPDIRECTSOUND3DLISTENER pDSListener
• LPDIRECTSOUND3DBUFFER pDSB3D
• LPKSPROPERTYSET pEAXListener
• gzRefPointer< gfObserver > mObserver
• sgVec3 mVelocity
• float mVolume
• bool isConfigured
• float mRolloff
• float mDoppler
• bool eaxSupported

5. Detailed Description

Class: gfListener
Function: class to provide for a movable, dynamic listener with 3 dimensions. Contains methods
to get/set positions, orientations, Doppler factor, velocity, and rolloff. Contains functionality to
tether to a gfObserver for automatic positioning.

• only one listener per context

6. Constructor and Destructor Documentation
• gfListener::gfListener (const char * name = 0)

o Constructor.
o Function: Constructor
o Purpose: creates new gfListener
o Parameters:

� name - optional name for listener

• gfListener::~gfListener ()

o Destructor.
o Function: Destructor
o Purpose: Destroy this listener

7. Member Function Documentation
• void gfListener::CommitDeferredSettings ()

o CommitDeferredSettings - commits all deferred settings.
o Function: SetEnviron
o Purpose: Sets the EAX reverb model
o Parameters:

� env - gfEnvironEnum representing selected EAX reverb model

• void gfListener::Config (void) [protected]

o Config - configures listener.
o Function: Config

95

o Purpose: configures DirectSound objects and interfaces

• gzVoid gfListener::onNotify (gzNotifyMessage * message) [protected, virtual]
o onNotify - internal messaging.
o Function: onNotify
o Purpose: method called by gfObserver when position is updated
o Parameters:

� message message from gfObserver notifying listener of position
update

• void gfListener::Position (gfPosition * pos)

o Position - positions the listener.
o Function: Position
o Purpose: Sets the position and orientation of the listener
o Parameters:

� pos - gfPosition with both position and orientation information

• void gfListener::SetDopplerFactor (float factor)

o SetDopplerFactor - exaggerates doppler effect.
o Function: SetDopplerFactor
o Purpose: Sets the Doppler factor for the listener - factor exaggerates real-world

doppler effect
o Parameters:

� value - the multiplicative factor to apply to real-world Doppler
calculations Default: 1.0

• void gfListener::SetEnviron (EAXLISTENERPROPERTIES props)
o SetEnviron - places the listener in EAX environment using EAX's

EAXLISTENERPROPERTIES struct.
o Function: SetEnviron
o Purpose: Sets the EAX reverb model
o Parameters:

� props - EAXLISTENERPROPERTIES representing selected EAX
reverb model

• void gfListener::SetEnviron (gfAudioEnvironment::gfEnvironEnum env)

o SetEnviron - places listener in EAX environment using gfEnum.
o Function: SetEnviron
o Purpose: Sets the EAX reverb model
o Parameters:

� env - gfEnvironEnum representing selected EAX reverb model

• void gfListener::SetEnvironSize (float size)

o SetEnvironSize - sets the size of the room.
o Function: SetEnvironSize

96

o Purpose: Sets the apparent room size only for EAX processing
o Parameters:

� size - the virtual room size for EAX

• void gfListener::SetObserver (const char * name)
o SetObserver - sets gfObserver to tether with (by name).
o Function: SetObserver
o Purpose: Tethers this listener to a gfObserver; listener maintains positions with

observer
o Parameters:

� name - name of the observer to link with

• void gfListener::SetObserver (gfObserver * obs)
o SetObserver - sets gfObserver to tether with.
o Function: SetObserver
o Purpose: Tethers this listener to a gfObserver; listener maintains positions with

observer
o Parameters:

� obs - reference to the gfObserver to link with

• void gfListener::SetRolloff (float factor)

o SetRolloff - sets global rolloff.
o Function: SetRolloff
o Purpose: sets the sound rolloff factor. The rolloff factor has a range of

DS3D_MINROLLOFFFACTOR (0-no rolloff) to
DS3D_MAXROLLOFFFACTOR (as currently defined, 10 times the rolloff
found in the real world). The default value is
DS3D_DEFAULTROLLOFFFACTOR (1.0).

o Parameters:
� factor - from DS3D_MINROLLOFFFACTOR(0) to

DS3D_MAXROLLOFFFACTOR(10)

• void gfListener::SetVelocity (sgVec3 dir, float spd)

o SetVelocity - velocity used in doppler effect.
o Function: SetVelocity
o Purpose: Sets the velocity for the listener - used in Doppler calculations
o Parameters:

� dir - direction vector for velocity
� spd - speed for velocity calculations

• void gfListener::SetVelocity (sgVec3 vel)

o SetVelocity - velocity used in doppler effect.
o Function: SetVelocity
o Purpose: Sets the velocity for the listener - used in Doppler calculations
o Parameters:

� vel - velocity vector

97

• void gfListener::Shutdown ()
o Shutdown - shuts down the listener.
o Function: Shutdown
o Purpose: shuts down listener and its DirectSound objects

8. Member Data Documentation
• bool gfListener::eaxSupported [protected]

o indicates whether EAX is supported
• gfListener::GZ_DECLARE_TYPE_INTERFACE
• bool gfListener::isConfigured [protected]

o indicates whether listener is configured
• float gfListener::mDoppler [protected]

o doppler factor
• gzRefPointer<gfObserver> gfListener::mObserver [protected]

o observer this listener is tethered to
• float gfListener::mRolloff [protected]

o rolloff factor
• sgVec3 gfListener::mVelocity [protected]

o current velocity of listener
• float gfListener::mVolume [protected]

o volume of listener - global setting affecting all sources
• LPDIRECTSOUNDBUFFER gfListener::pDSB [protected]
• LPDIRECTSOUND3DBUFFER gfListener::pDSB3D [protected]

o DirectSound3D buffer - used to obtain EAX property set interface
• LPDIRECTSOUND3DLISTENER gfListener::pDSListener [protected]

o DirectSound listener
• LPKSPROPERTYSET gfListener::pEAXListener [protected]

o EAX property set interface
The documentation for this class was generated from the following files:

• gfListener.h
• gfListener.cpp

G. GFNETVOICE CLASS REFERENCE
#include <gfnetvoice.h>

1. Public Methods
• gfNetVoice (bool host, const char *name=0)

Constructor.

• virtual ~gfNetVoice ()
Destructor.

• void SetMinVoiceDistance (float value)

98

SetMinVoiceDistance - Sets the distance at which no further gain is applied moving towards the voice
object.

• void SetMaxVoiceDistance (float value)
SetMaxVoiceDistance - Sets the maximum voice distance - distance at which no further attenuation
occurs.

• void SetOcclusion (int voice, long occlusion, float occlusionLF, float
occlusionRoomRatio)

SetOcclusion - sets the specified voice to be occluded.

• void RemOcclusion (int voice)
RemOcclusion - removes occlusion from the specified voice.

• bool IsOccluded (int voice)
IsOccluded - indicates whether voice is occluded.

• void SetObstruction (int voice, long obstruction, float obstructionLF)
SetObstruction - sets obstruction values for this sound.

• void RemObstruction (int voice)
RemObstruction - removes obstruction from this sound.

• bool IsObstructed (int voice)
IsObstructed - indicates whether voice is obstructed.

• void SetExclusion (int voice, long exclusion, float exclusionLF)
SetExclusion - sets exclusion values for this sound.

• void RemExclusion (int voice)
RemExclusion - removes exclusion from this sound.

• bool IsExcluded (int voice)
IsExcluded - indicates whether voice is excluded.

• int GetNumVoices ()
GetNumVoices.

• void GetVoicePosition (sgVec3 xyz, int Idx)
GetVoicePosition - gets the position of the voice.

99

2. Detailed Description

Class: gfNetVoice
Function: class to provide for a movable, dynamic live voice with up to 63 remote voice clients.
Contains methods to set minimum and maximum voice distances. Manages setting occlusion,
obstruction or exclusion for individual voices.

3. Constructor and Destructor Documentation
• gfNetVoice::gfNetVoice (bool host, const char * name = 0)

o Constructor.
o Function: Constructor
o Purpose: creates new gfNetVoice
o Parameters:

� host - bool indicating whether this gfNetVoice hosts the session;
TRUE = hosting

� name - optional name for listener

• gfNetVoice::~gfNetVoice () [virtual]
o Destructor.
o Function: Destructor
o Purpose: Destroys gfNetVoice

4. Member Function Documentation
• int gfNetVoice::GetNumVoices () [inline]

o Gets the number of current voices connected.

• void gfNetVoice::GetVoicePosition (sgVec3 pos, int Idx)
o GetVoicePosition - gets the position of the voice.
o Function: GetVoicePosition
o Purpose: Gets the position for the specified voice
o Parameters:

• pos sgVec3 position to return with position values
• Idx index value in array of VOICE_INFO objects

• bool gfNetVoice::IsExcluded (int voice) [inline]

o IsExcluded - indicates whether voice is excluded.

• bool gfNetVoice::IsObstructed (int voice) [inline]
o IsObstructed - indicates whether voice is obsructed.

• bool gfNetVoice::IsOccluded (int voice) [inline]

o IsOccluded - indicates whether voice is occluded.

100

• void gfNetVoice::RemExclusion (int Idx)
o RemExclusion - removes exclusion from this sound.
o Function: RemExclusion
o Purpose: Removes exclusion from this sound - sets default values

• void gfNetVoice::RemObstruction (int Idx)

o RemObstruction - removes obstruction from this sound.
o Function: RemObstruction
o Purpose: Removes obstruction from this sound - sets default values

• void gfNetVoice::RemOcclusion (int Idx)

o RemOcclusion - removes occlusion from the specified voice.
o Function: RemOcclusion
o Purpose: Removes occlusion from this sound - sets default values
o Parameters:

� voiceNum index of voice in array of VOICE_INFO

• void gfNetVoice::SetExclusion (int Idx, long exclusion, float exclusionLF)
o SetExclusion - sets exclusion values for this sound.
o Function: SetExclusion
o Purpose: sets exclusion values for specified voice
o Parameters:

� Idx index to the voice in array of VOICE_INFO structs
� exclusion - the exclusion value for EAX; range [-10000, 0] -10000

excludes sound to barely audible; 0 provides for no exclusion
� exclusionLF - ratio of low to high frequency attenuation; range [0.0,

1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low
and high freq attenuation Purpose: Sets the specified voice's exclusion
settings

• void gfNetVoice::SetMaxVoiceDistance (float dist)

o SetMaxVoiceDistance - Sets the maximum voice distance - distance at which no
further attenuation occurs.

o Function: SetMaxVoiceDistance
o Purpose: Sets the maximum voice distance - distance at which no further

attenuation occurs Default is 1 billion, virtually ensuring continuous attenuation
o Parameters:

� value - distance at which no further attenuation occurs

• void gfNetVoice::SetMinVoiceDistance (float dist)
o SetMinVoiceDistance - Sets the distance at which no further gain is applied

moving towards the voice object.
o Function: SetMinVoiceDistance
o Purpose: Sets the distance at which no further gain is applied moving towards

the voice object Ex: if minimum voice distance set to 10, from 0.0 to 10.0 voice
intensity will be constant

o Parameters:

101
� value - the minimum voice distance

• void gfNetVoice::SetObstruction (int Idx, long obstruction, float obstructionLF)

o SetObstruction - sets obstruction values for this sound.
o Function: SetObstruction
o Purpose: Sets this voice's obstruction settings
o Parameters:

� Idx index to the voice in array of VOICE_INFO structs
� obstruction - the obstruction value for EAX; range [-10000, 0] -10000

obstructs sound to barely audible; 0 provides for no obstruction
� obstructionLF - ratio of low to high frequency attenuation; range [0.0,

1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low
and high freq attenuation

• void gfNetVoice::SetOcclusion (int Idx, long occlusion, float occlusionLF, float

occlusionRoomRatio)
o SetOcclusionSettings - sets the specified voice to be occluded.
o Function: SetOcclusion
o Purpose: Sets this sound's occlusion settings
o Parameters:

� Idx - the index of the VOICE_INFO to modify occlusion
� occlusion - the occlusion value for EAX; range [-10000, 0] -10000

occludes sound to barely audible; 0 provides for no occlusion
� occlusionLF - ratio of low to high frequency attenuation; range [0.0,

1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low
and high freq attenuation

� occlusionRoomRatio - amount of occlusion to apply to non-direct path
sound (reflections, reverberation) range [0.0, 10.0] 0.0 applies no
additional occlusion to reflected/reverberated sounds; 10.0 (maximum)
applies 10 times normal occlusion to non-direct path sound

The documentation for this class was generated from the following files:

• gfnetvoice.h
• gfnetvoice.cpp

H. GFSHAPE CLASS REFERENCE
#include <gfaudioenvironment.h>

1. Public Methods
• gfShape ()

Constructor.

• ~gfShape ()
Destructor.

• void SetSize (float size=7.5)
SetSize - sets the “room” size for the environment.

102

• float GetSize ()
GetSize - gets the size of the “room”.

• virtual void SetLocation (sgVec3 pos)=0
SetLocation - sets the location for the shape.

• virtual void GetCenter (sgVec3 pos)=0
GetCenter - gets the center position of the shape.

• virtual bool Contains (sgVec3 pos)=0
Contains - determines whether position inside shape (pure virtual function).

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Protected Attributes
• float mSize

4. Detailed Description

Class: gfShape Function: base class for all audio shapes

5. Constructor and Destructor Documentation
• gfShape::gfShape ()

o Constructor.
o Function: Constructor
o Purpose: creates new gfShape

• gfShape::~gfShape ()

o Destructor.
o Function: Destructor
o Purpose: destroys gfShape

6. Member Function Documentation
• virtual bool gfShape::Contains (sgVec3 pos) [pure virtual]

o Contains - determines whether position inside shape (pure virtual function).
o Implemented in gfCube and gfSphere.

• virtual void gfShape::GetCenter (sgVec3 pos) [pure virtual]

o GetCenter - gets the center position of the shape.
o Implemented in gfCube and gfSphere.

103

• float gfShape::GetSize () [inline]

o GetSize - gets the size of the “room”.

• virtual void gfShape::SetLocation (sgVec3 pos) [pure virtual]
o SetLocation - sets the location for the shape.
o Implemented in gfCube, and gfSphere.

• void gfShape::SetSize (float size = 7.5)

o SetSize - sets the “room” size for the environment.
o Function: SetSize
o Purpose: sets the size of the shape for EAX purposes
o Parameters:

• size - the size of the shape

7. Member Data Documentation
• gfShape::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented in gfCube and gfSphere.

• float gfShape::mSize [protected]

The documentation for this class was generated from the following files:

• gfaudioenvironment.h
• gfaudioenvironment.cpp

I. GFSOUNDOBJECT CLASS REFERENCE
#include <gfSoundObject.h>

1. Public Types
• enum gfSpatialEnum { GF_3D = 0, GF_2D }

2. Public Methods
• gfSoundObject (const char *filename, const char *name=0, bool networked=false,

gfSpatialEnum type=GF_3D)
Constructor.

• ~gfSoundObject ()
Destructor - stops play and destroys this gfSoundObject.

• const char * GetFileName ()
GetFileName - returns the filename of the sound.

104

• void Play (bool loop=false)
Play - plays wave file; if loop = TRUE, then loop wav continuously.

• bool IsPlaying ()
IsPlaying - TRUE if this sound is playing.

• bool IsLooping ()
IsLooping - TRUE if this sound is looping.

• void Stop ()
Stop - stops wave file.

• void IncreasePitch (float value)
IncreasePitch - increases pitch (frequency) of playing wave file.

• void DecreasePitch (float value)
DecreasePitch - decreases pitch (frequency) of playing wave file.

• void SetPitch (float pitch)
SetPitch - sets the frequency (pitch) of wave file.

• void ResetPitch ()
ResetPitch - sets the frequency (pitch) of wave file to its original recorded frequency.

• void SetPan (long pan)
SetPan - sets the pan level for a 2D audio source.

• void IncreaseVolume (float value)
IncreaseVolume - increases gain, up to maximum level of original recording.

• void DecreaseVolume (float value)
DecreaseVolume - decreases gain, lower limit is 0.0 (mute).

• void SetVolume (float volume)
SetVolume - sets the gain for the sound object.

• void Position (gfPosition *pos)
Position - positions the sound object.

• void Position (sgVec3 pos)
Position - positions the sound object.

• void SetRelative ()
SetRelative - sets this sound object relative to the listener.

105

• void SetNotRelative ()
SetNotRelative - releases this sound object from relative positioning.

• bool IsRelative ()
IsRelative - returns whether sound is positioned relative to listener or world; TRUE = listener.

• void SetMinDistance (float value=1.0f)
SetMinDistance - distance away from sound object at which gain is clamped as you move closer to
listener.

• void SetMaxDistance (float value=1000000000.0f)
SetMaxDistance - distance away from sound object at which gain does not further attenuate.

• void SetTether (gfDynamic *obj)
SetTether - sets this sound to tether to a gfDynamic derived class.

• void SetConeDirection (float x, float y, float z)
SetConeDirection - sets directivity.

• void SetConeAngles (float, float)
SetConeAngles - sets the width of the cone when sound is directional.

• void SetConeOutsideVolume (float value)
SetConeOutsideVolume - sets intensity (gain) of sound outside directional cone.

• void SetOcclusion (long occlusion, float occlusionLF, float occlusionRoomRatio)
SetOcclusion - sets occlusion values for this sound.

• void RemOcclusion ()
RemOcclusion - removes occlusion from this sound.

• bool IsOccluded ()
IsOccluded - TRUE indicates sound is occluded.

• void SetObstruction (long obstruction, float obstructionLF)
SetObstruction - sets obstruction values for this sound.

• void RemObstruction ()
RemObstruction - removes obstruction from this sound.

• bool IsObstructed ()
IsObstructed - TRUE indicates sound is obstructed.

• void SetExclusion (long exclusion, float exclusionLF)
SetExclusion - sets exclusion values for this sound.

106

• void RemExclusion ()

RemExclusion - removes exclusion from this sound.

• bool IsExcluded ()
IsExcluded - TRUE indicates sound is excluded.

• void SetNetworked (bool network)
SetNetworked - sets whether this sound object is networked to remote clients.

3. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

4. Protected Methods
• void Config ()

Config - configures sound object.

• bool ObtainResources ()
ObtainResources - creates buffers.

• void ReleaseResources ()
Release - releases resources.

• void CheckPlayingSounds ()
CheckPlayingSounds - checks to ensure all sounds that have buffers are playing.

• int CreateNewSoundObject ()
CreateNewSoundObject - internal management and tracking of this sound object.

• bool OpenWaveFile ()
OpenWaveFile - mmio reading method.

• void ResetFile ()
ResetFile - mmio reset method.

• void InitialBufferLoad ()
InitialBufferLoad - reads wave file into memory.

• gzVoid onNotify (gzNotifyMessage *message)
onNotify - internal messaging.

• bool SetOcclusionSettings ()
SetOcclusionSettings.

107

• bool SetObstructionSettings ()
SetObstructionSettings.

• bool SetExclusionSettings ()
SetExclusionSettings.

• void Send (gfSoundActionEnum action)
Send - sends gfSoundActionPacket to network.

5. Protected Attributes
• LPDIRECTSOUNDBUFFER pDSB
• LPDIRECTSOUND3DBUFFER pDSB3D
• LPKSPROPERTYSET pEAXSource
• gfSpatialEnum mType
• gzRefPointer< gfDynamic > mTether
• unsigned long mPitch
• long mVolume
• long mPan
• float mMinDistance
• float mMaxDistance
• float mMinConeAngle
• float mMaxConeAngle
• float mOuterConeVolume
• sgVec3 mConeDirection
• char m_Filename [128]
• HMMIO m_hMmioFile
• DSBUFFERDESC m_DSBufDesc
• UINT BytesToEndOfFile
• UINT DataChunkSize
• UINT DataChunkOffset
• bool isConfigured
• bool mPlay
• bool mLooping
• long mOcc
• float mOccLF
• float mOccRoomRatio
• long mObstr
• float mObstrLF
• long mExcl
• float mExclLF
• bool eaxSupported
• bool mRel
• bool isObstructed
• bool isOccluded
• bool isExcluded
• bool isNetworked

6. Detailed Description

108

Class: gfSoundObject
Function: class to represent a 2D or 3D sound source. 2D capabilities: volume control, pitch
control, pans left/right 3D capabilities: distance attenuation, velocity (Doppler) positioning, pitch,
volume, and environmental effects.

• Can be linked to a visual object or stand alone
• gfSoundObjects have occlusion, obstruction, and exclusion settings that are specific to

the sound loaded when 3D NOTE: Most sound cards are limited in the number of 3D
and 2D hardware buffers - for sounds that do not require spatialization, utilize 2D
settings

7. Member Enumeration Documentation
• enum gfSoundObject::gfSpatialEnum

o Enumeration values:
� GF_3D
� GF_2D

8. Constructor and Destructor Documentation
• gfSoundObject::gfSoundObject (const char * filename, const char * name = 0, bool

networked = false, gfSpatialEnum type = GF_3D)
o Constructor.
o Function: Constructor
o Purpose: creates new gfSoundObject
o Parameters:

� name - optional name for sound object
• gfSoundObject::~gfSoundObject ()

o Destructor - stops play and destroys this gfSoundObject.
o Function: Destructor
o Purpose: Destroy this sound object

9. Member Function Documentation
• void gfSoundObject::CheckPlayingSounds () [protected]

o CheckPlayingSounds - checks to ensure all sounds that have buffers are playing.
o Function: OpenWaveFile
o Purpose: opens wave file header for reading file information

• void gfSoundObject::Config (void) [protected]

o Config - configures sound object.
o Function: Config
o Purpose: configures variables and DirectSound objects

• int gfSoundObject::CreateNewSoundObject () [protected]

o CreateNewSoundObject - internal management and tracking of this sound
object.

109
o Function: CreateNewSoundObject

o Purpose: creates new gfSoundObject and stores it in global sound object list
o Parameters:

� int - integer representing number of sound objects

• void gfSoundObject::DecreasePitch (float amount)
o DecreasePitch - decreases pitch (frequency) of playing wave file.
o Function: DecreasePitch
o Purpose: Decreases the pitch (frequency) of this sound object by the given value
o Parameters:

� value - the amount of the pitch decrease

• void gfSoundObject::DecreaseVolume (float amount)
o DecreaseVolume - decreases gain, lower limit is 0.0 (mute).
o Function: DecreaseVolume
o Purpose: Decreases the volume (intensity) level by the given value
o Parameters:

� value - the amount of volume (intensity) to decrease

• const char* gfSoundObject::GetFileName () [inline]
o GetFileName - returns the filename of the sound.

• void gfSoundObject::IncreasePitch (float amount)

o IncreasePitch - increases pitch (frequency) of playing wave file.
o Function: IncreasePitch
o Purpose: Increases the pitch (frequency) of this sound object by the given value
o Parameters:

� value - the amount of the pitch increase

• void gfSoundObject::IncreaseVolume (float amount)
o IncreaseVolume - increases gain, up to maximum level of original recording.
o Function: IncreaseVolume
o Purpose: Increases the volume (intensity) level by the given value
o Parameters:

� value - the amount of volume (intensity) to increase

• void gfSoundObject::InitialBufferLoad () [protected]
o InitialBufferLoad - reads wave file into memory.
o Function: Constructor
o Purpose: creates new gfListener
o Parameters:

� name - optional name for listener

• bool gfSoundObject::IsExcluded () [inline]
o IsExcluded - TRUE indicates sound is excluded.

• bool gfSoundObject::IsLooping ()

110

o IsLooping - TRUE if this sound is looping.
o Function: IsLooping
o Purpose: indicate whether this sound object is looping
o Returns:

� bool TRUE if looping; FALSE if not

• bool gfSoundObject::IsObstructed () [inline]
o IsObstructed - TRUE indicates sound is obstructed.

• bool gfSoundObject::IsOccluded () [inline]

o IsOccluded - TRUE indicates sound is occluded.

• bool gfSoundObject::IsPlaying ()
o IsPlaying - TRUE if this sound is playing.
o Function: IsPlaying
o Purpose: indicate whether this sound object is playing
o Returns:

• bool TRUE if playing; FALSE if not

• bool gfSoundObject::IsRelative () [inline]
o IsRelative - returns whether sound is positioned relative to listener or world;

TRUE = listener.

• bool gfSoundObject::ObtainResources () [protected]
o ObtainResources - creates buffers.
o Function: ObtainResources
o Purpose: configures DirectSound derived objects

• gzVoid gfSoundObject::onNotify (gzNotifyMessage * message) [protected]

o onNotify - internal messaging.
o Function: onNotify
o Purpose: Internal message handler
o Parameters:

• message - Gizmo3D message struct - used internally

• bool gfSoundObject::OpenWaveFile () [protected]
o OpenWaveFile - mmio reading method.
o Function: OpenWaveFile
o Purpose: opens wave file header for reading file information

• void gfSoundObject::Play (bool loop = false)

o Play - plays wave file; if loop = TRUE, then loop wav continuously.
o Function: Play
o Purpose: Plays this sound object

111

• void gfSoundObject::Position (sgVec3 pos)

o Position - positions the sound object.
o Function: Position
o Purpose: Position this sound object
o Parameters:

• pos - sgVec for new position of sound object
• void gfSoundObject::Position (gfPosition * pos)

o Position - positions the sound object.
o Function: Position
o Purpose: Position this sound object
o Parameters:

• pos - gfPosition for new position of sound object

• void gfSoundObject::ReleaseResources () [protected]
o Release - releases resources.
o Function: Release
o Purpose: Releases resources for this sound object

• void gfSoundObject::RemExclusion ()

o RemExclusion - removes exclusion from this sound.
o Function: RemExclusion
o Purpose: Removes exclusion from this sound - sets default values

• void gfSoundObject::RemObstruction ()

o RemObstruction - removes obstruction from this sound.
o Function: RemObstruction
o Purpose: Removes obstruction from this sound - sets default values

• void gfSoundObject::RemOcclusion ()

o RemOcclusion - removes occlusion from this sound.
o Function: RemOcclusion
o Purpose: Removes occlusion from this sound - sets default values

• void gfSoundObject::ResetFile () [protected]

o ResetFile - mmio reset method.
o Function: ResetFile
o Purpose: resets the mmio read function for reading wave data after header

determination

• void gfSoundObject::ResetPitch ()
o ResetPitch - sets the frequency (pitch) of wave file to its original recorded

frequency.

112

o Function: ResetPitch
o Purpose: Sets the frequency (pitch) of this sound object to its original recorded

frequency

• void gfSoundObject::Send (gfSoundActionEnum action) [protected]
o Send - sends gfSoundActionPacket to network.
o Function: Send
o Purpose: Sets the sound to automatically transmit play, stop calls to the network
o Parameters:

• network TRUE = transmit automatically; FALSE = no transmission

• void gfSoundObject::SetConeAngles (float inner, float outer)
o SetConeAngles - sets the width of the cone when sound is directional.
o Function: SetConeAngles
o Purpose: sets the angular measurement for inner and outer cones directivity

scenario
o Parameters:

• inner the inner angle
• outer the outer angle

• void gfSoundObject::SetConeDirection (float x, float y, float z)

o SetConeDirection - sets directivity.
o Function: SetConeDirection
o Purpose: sets the directivity of the cone
o Parameters:

• x - look at x direction
• x - look at y direction
• x - look at z direction

• void gfSoundObject::SetConeOutsideVolume (float vol)

o SetConeOutsideVolume - sets intensity (gain) of sound outside directional cone.
o Function: SetConeOutsideVolume
o Purpose: Sets the outside cone volume Outside cone volume is the attenuation

applied outside the cone of directivity
o Parameters:

• value - gain value for the volume outside the directed cone; 0 = no
volume range = (0.0f, inf)

• void gfSoundObject::SetExclusion (long exclusion, float exclusionLF)

o SetExclusion - sets exclusion values for this sound.
o Function: SetExclusion
o Purpose: Sets this sound's exclusion settings
o Parameters:

• exclusion - the exclusion value for EAX; range [-10000, 0] -10000
excludes sound to barely audible; 0 provides for no exclusion

• exclusionLF - ratio of low to high frequency attenuation; range [0.0,
1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low
and high freq attenuation

113

• bool gfSoundObject::SetExclusionSettings () [protected]

o SetExclusionSettings.
o Function: SetExclusionSettings
o Purpose: Sets the respective exclusion values into the EAX property set
o Returns:

• bool TRUE = exclusion values successfully set

• void gfSoundObject::SetMaxDistance (float distance = 1000000000.0f)
o MaxDistance - distance away from sound object at which gain does not further

attenuate.
o Function: MaxDistance
o Purpose: Sets the distance at which no further attenuation is applied moving

away from sound object
o Parameters:

• value - the maximum distance - defaults to 1 billion

• void gfSoundObject::SetMinDistance (float distance = 1.0f)
o MinDistance - distance away from sound object at which gain is clamped as you

move closer to listener.
o Function: MinDistance
o Purpose: Sets the distance at which no further gain is applied moving towards

the sound object
o Parameters:

• value - the minimum distance - defaults to 1.0f

• void gfSoundObject::SetNetworked (bool network)
o SetNetworked - sets whether this sound object is networked to remote clients.
o Function: SetNetworked
o Purpose: Sets the sound to automatically transmit play, stop calls to the network
o Parameters:

• network TRUE = transmit automatically; FALSE = no transmission

• void gfSoundObject::SetNotRelative ()
o RemoveRelative - releases this sound object from relative positioning.
o Function: RemoveRelative
o Purpose: Sets this sound object to be positioning globally; all subsequent calls to

Position() will place this sound object in global coordinates

• void gfSoundObject::SetObstruction (long obstruction, float obstructionLF)
o SetObstruction - sets obstruction values for this sound.
o Function: SetObstruction
o Purpose: Sets this sound's obstruction settings
o Parameters:

� obstruction - the obstruction value for EAX; range [-10000, 0] -10000
obstructs sound to barely audible; 0 provides for no obstruction

114

� obstructionLF - ratio of low to high frequency attenuation; range [0.0,
1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low
and high freq attenuation

• bool gfSoundObject::SetObstructionSettings () [protected]

o SetObstructionSettings.
o Function: SetOcclusion
o Purpose: Sets the respective occlusion values into the EAX property set
o Returns:

� bool TRUE = obstruction values successfully set

• void gfSoundObject::SetOcclusion (long occlusion, float occlusionLF, float
occlusionRoomRatio)

o SetOcclusion - sets occlusion values for this sound.
o Function: SetOcclusion
o Purpose: Sets this sound's occlusion settings
o Parameters:

� occlusion - the occlusion value for EAX; range [-10000, 0] -10000
occludes sound to barely audible; 0 provides for no occlusion

� occlusionLF - ratio of low to high frequency attenuation; range [0.0,
1.0] 0.0 indicates no attenuation at low freq; 1.0 indicates identical low
and high freq attenuation

� occlusionRoomRatio - amount of occlusion to apply to non-direct path
sound (reflections, reverberation) range [0.0, 10.0] 0.0 applies no
additional occlusion to reflected/reverberated sounds; 10.0 (maximum)
applies 10 times normal occlusion to non-direct path sound

• bool gfSoundObject::SetOcclusionSettings () [protected]

o SetOcclusionSettings.
o Function: SetOcclusionSettings
o Purpose: Sets the respective occlusion values into the EAX property set
o Returns:

� bool TRUE = occlusion settings successfully completed

• void gfSoundObject::SetPan (long pan)
o SetPan - sets the pan level for a 2D audio source.
o Function: SetPan
o Purpose: sets the pan left or right for a 2D audio source
o Parameters:

� pan - the amount of the pan The value in pan is measured in
hundredths of a decibel (dB), in the range of DSBPAN_LEFT to
DSBPAN_RIGHT. These values are currently defined in Dsound.h as –
10,000 and 10,000 respectively. The value DSBPAN_LEFT means the
right channel is attenuated by 100 dB. The value DSBPAN_RIGHT
means the left channel is attenuated by 100 dB. The neutral value is
DSBPAN_CENTER, defined as zero. This value of 0 in the pan
parameter means that both channels are at full volume (they are
attenuated by 0 decibels). At any setting other than
DSBPAN_CENTER, one of the channels is at full volume and the
other is attenuated.

115

• void gfSoundObject::SetPitch (float pitch)
o SetPitch - sets the frequency (pitch) of wave file.
o Function: SetPitch
o Purpose: Sets the frequency (pitch) of this sound object; range (0.0f, inf] A

value of DSBFREQUENCY_ORIGINAL resets back to the original value.
o Parameters:

� pitch - the frequency (pitch) to set; range (100.0, 100,000.0)

• void gfSoundObject::SetRelative ()
o SetRelative - sets this sound object relative to the listener.
o Function: SetRelative
o Purpose: Sets this sound object to be positioning relative to gfListener; all

subsequent calls to Position() will place this sound object in relative positions to
the one listener in the given context

• void gfSoundObject::SetTether (gfDynamic * obj)

o SetTethered - sets this sound to tether to a gfDynamic derived class.
o Function: SetTether
o Purpose: Sets the gfDynamic derived class this gfSoundObject is tethered to for

positioning
o Parameters:

• obj - pointer to a gfDynamic derived class to tether to

• void gfSoundObject::SetVolume (float volume)
o SetVolume - sets the gain for the sound object.
o Function: SetVolume
o Purpose: set the volume of the sound object. The volume is specified in

hundredths of decibels (dB). Allowable values are between
DSBVOLUME_MAX (no attenuation) and DSBVOLUME_MIN (silence).
These values are currently defined in Dsound.h as 0 and -10,000 respectively.
The value DSBVOLUME_MAX represents the original, unadjusted volume of
the stream. The value DSBVOLUME_MIN indicates an audio volume
attenuated by 100 dB, which, for all practical purposes, is silence. Currently
DirectSound does not support amplification.

o Parameters:
• volume the amount of volume (GAIN)

• void gfSoundObject::Stop ()

o Stop - stops wave file.
o Function: Stop Purpose: Stops playing on this sound object

10. Member Data Documentation
• UINT gfSoundObject::BytesToEndOfFile [protected]

o buffer description = bytes to the end of the file
• UINT gfSoundObject::DataChunkOffset [protected]

o number of bytes in offset
• UINT gfSoundObject::DataChunkSize [protected]

116

o number of bytes in chunk
• bool gfSoundObject::eaxSupported [protected]

o whether EAX is supported
• gfSoundObject::GZ_DECLARE_TYPE_INTERFACE
• bool gfSoundObject::isConfigured [protected]

o whether sound object is configured
• bool gfSoundObject::isExcluded [protected]

o indicates whether sound is excluded
• bool gfSoundObject::isNetworked [protected]

o indicates whether sound is networked
• bool gfSoundObject::isObstructed [protected]

o indicates whether sound is obstructed
• bool gfSoundObject::isOccluded [protected]

o indicates whether sound is occluded
• DSBUFFERDESC gfSoundObject::m_DSBufDesc [protected]

o buffer description
• char gfSoundObject::m_Filename[128] [protected]

o file name for the wave file
• HMMIO gfSoundObject::m_hMmioFile [protected]

o mmio file used to read wave file
• sgVec3 gfSoundObject::mConeDirection [protected]

o cone direction
• long gfSoundObject::mExcl [protected]

o exclusion setting
• float gfSoundObject::mExclLF [protected]

o exclusion setting for low frequencies
• bool gfSoundObject::mLooping [protected]

o indicates sound is looping
• float gfSoundObject::mMaxConeAngle [protected]

o maximum cone angle
• float gfSoundObject::mMaxDistance [protected]

o maximum distance
• float gfSoundObject::mMinConeAngle [protected]

o minimum cone angle
• float gfSoundObject::mMinDistance [protected]

o min distance
• long gfSoundObject::mObstr [protected]

o obstruction setting
• float gfSoundObject::mObstrLF [protected]

o obstruction setting for low frequencies
• long gfSoundObject::mOcc [protected]

o occlusion setting
• float gfSoundObject::mOccLF [protected]

o occlusion setting for low frequencies

117

• float gfSoundObject::mOccRoomRatio [protected]
o occlusion room ratio setting

• float gfSoundObject::mOuterConeVolume [protected]
o volume setting for outside cone areas

• long gfSoundObject::mPan [protected]
o stored pan value

• unsigned long gfSoundObject::mPitch [protected]
o stored pitch value

• bool gfSoundObject::mPlay [protected]
o indicates gfSoundObject is playing or Play() called prior to config()

• bool gfSoundObject::mRel [protected]
o indicates sound is relative to listener

• gzRefPointer<gfDynamic> gfSoundObject::mTether [protected]
o gfObject to tether this sound to for positioning

• gfSpatialEnum gfSoundObject::mType [protected]
o type of sound object - either GF_2D or GF_3D

• long gfSoundObject::mVolume [protected]
o stored volume value

• LPDIRECTSOUNDBUFFER gfSoundObject::pDSB [protected]
o secondary sound buffer

• LPDIRECTSOUND3DBUFFER gfSoundObject::pDSB3D [protected]
o DirectSound3D buffer - for 3D positioning

• LPKSPROPERTYSET gfSoundObject::pEAXSource [protected]
o EAX property set interface

The documentation for this class was generated from the following files:

• gfSoundObject.h
• gfSoundObject.cpp

J. GFSPHERE CLASS REFERENCE
#include <gfaudioenvironment.h>

1. Public Methods
• gfSphere (float x=0.0f, float y=0.0f, float z=0.0f, float radius=1.0f)

Constructor - optional args for sphere center and radius.

• ~gfSphere ()
Destructor.

• void SetSphere (float x, float y, float z, float radius)
SetSphere - sets environment sphere.

• virtual void SetLocation (sgVec3 pos)

118

SetLocation - sets the location for the shape.

• bool Contains (sgVec3 pos)
Contains - determines whether position inside sphere.

• void GetCenter (sgVec3 pos)
GetCenter - gets the center point of the sphere.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: gfSphere
Function: class for sphere audio shape

4. Constructor and Destructor Documentation
• gfSphere::gfSphere (float x = 0.0f, float y = 0.0f, float z = 0.0f, float radius = 1.0f)

o Constructor - optional args for sphere center and radius.
o Function: Constructor
o Purpose: creates new gfSphere
o Parameters:

� x - sphere center x coordinate
� y - sphere center y coordinate
� z - sphere center z coordinate
� radius - sphere radius

• gfSphere::~gfSphere ()

o Destructor.
o Function: Destructor
o Purpose: destroys gfSphere

5. Member Function Documentation
• bool gfSphere::Contains (sgVec3 pos) [virtual]

o Contains - determines whether position inside sphere.
o Function: Contains
o Purpose: determine whether the gfPosition is contained in the shape
o Parameters:

� pos - the position to check for containment
o Returns:

� bool - TRUE = inside shape; FALSE = outside shape
o Implements gfShape.

119

• void gfSphere::GetCenter (sgVec3 pos) [virtual]
o GetCenter - gets the center point of the sphere.
o Function: GetCenter
o Purpose: determine the center point of the cube
o Parameters:

� pos - the position to fill in data
o Implements gfShape).

• void gfSphere::SetLocation (sgVec3 pos) [virtual]

o SetLocation - sets the location for the shape.
o Function: SetLocation
o Purpose: sets the center location for the sphere
o Parameters:

� pos - the position of the center of the sphere
o Implements gfShape.

• void gfSphere::SetSphere (float x, float y, float z, float radius)

o SetSphere - sets environment sphere.
o Function: SetSphere
o Purpose: sets the shape of the sphere; size and radius
o Parameters:

� x - sphere center x coordinate
� y - sphere center y coordinate
� z - sphere center z coordinate
� radius - sphere radius

6. Member Data Documentation
• gfSphere::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from gfShape.

The documentation for this class was generated from the following files:

• gfaudioenvironment.h
• gfaudioenvironment.cpp

K. VOICE_INFO STRUCT REFERENCE
#include <gfnetvoice.h>

1. Public Attributes
• DWORD id
• LPDIRECTSOUND3DBUFFER pDSB3D
• LPKSPROPERTYSET pEAXvoice
• long mOcc
• float mOccLF

120

• float mOccRoomRatio
• bool isOccluded
• long mObstr
• float mObstrLF
• bool isObstructed
• long mExcl
• float mExclLF
• bool isExcluded
• float mX
• float mY
• float mZ

2. Detailed Description

Struct: VOICE_INFO
Function: struct to store information about each remote voice client. Contains necessary
DirectVoice buffers for 3D spatialization Permits setting of occlusion, obstruction or exclusion
for individual voices.

3. Member Data Documentation
• DWORD VOICE_INFO::id
• bool VOICE_INFO::isExcluded

o indicates whether voice is excluded
• bool VOICE_INFO::isObstructed

o indicates whether voice is obstructed
• bool VOICE_INFO::isOccluded

o indicates whether voice is occluded
• long VOICE_INFO::mExcl

o voice exclusion setting
• float VOICE_INFO::mExclLF

o voice exclusion setting for low frequencies
• long VOICE_INFO::mObstr

o voice obstruction setting
• float VOICE_INFO::mObstrLF

o voice obstruction setting for low frequencies
• long VOICE_INFO::mOcc

o voice occlusion setting
• float VOICE_INFO::mOccLF

o voice occlusion setting for low frequencies
• float VOICE_INFO::mOccRoomRatio

o voice occlusion room ratio setting
• float VOICE_INFO::mX

o voice x position
• float VOICE_INFO::mY

o voice y position
• float VOICE_INFO::mZ

121

o voice z position
• LPDIRECTSOUND3DBUFFER VOICE_INFO::pDSB3D

o 3D sound buffer for voice
• LPKSPROPERTYSET VOICE_INFO::pEAXvoice

o EAX property interface for voice

The documentation for this struct was generated from the following file:

• gfnetvoice.h
• gfnetvoice.cpp

122

APPENDIX B. AUSERVERLIB DOCUMENTATION

A. AUBASE CLASS REFERENCE
#include <aubase.h>

1. Public Methods
• void SendNotify (char *message, auRefData *data)

SendNotify - pass messages internally.

• void AddNotifier (auBase *notifier)
AddNotifier - registers auClass with caller.

• bool IsOfClass (gzType *type) const
• bool IsExactlyClass (gzType *type) const
• virtual void SetName (const char *name)

SetName - sets the name of this object.

• virtual const char * GetName () const
• auBase ()
• virtual ~auBase ()

Destructor.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Protected Attributes
• char mName [128]

4. Detailed Description

Class: auBase Function:
Base class from which all other auClasses are derived from. Supplies basic naming, printing and
class reference methods.

5. Constructor and Destructor Documentation
• auBase::auBase () [inline]

o Construct a new auBase. auBase is a pure virtual object and therefore cannot be
created on its own. Only derived classes which implement the virtual methods
may be constructed.

• virtual auBase::~auBase () [inline, virtual]
o Destructor.

123

6. Member Function Documentation
• void auBase::AddNotifier (auBase * notifier)

o AddNotifier - registers auClass with caller.
o Tell this object to subscribe to notifier's messages. Notifier must be an object

derived from gfBase.
o See also:

� SendNotify()
o Parameters:

� notifier - The object to receive messages from

• virtual const char* auBase::GetName () const [inline, virtual]
o GetName - Get the name of object

• bool auBase::IsExactlyClass (gzType * type) const [inline]

o Is this instance exactly the passed class type? Get the gzType by calling
getClassType()

• bool auBase::IsOfClass (gzType * type) const [inline]

o Is this instance derived from the passed class type? Get the gzType by calling
getClassType()

• void auBase::SendNotify (char * message, auRefData * data)

o SendNotify - pass messages internally.
o Send a message from this object to any other object that subscribed to this

object. A text string and gfRefData can be sent in the message. Any subscriber
to this object can then parse the text string and user data.

o Parameters:
• message - Text string to send in message
• data - Any additional data that needs to be sent with this message

o See also:
• AddNotifier()

• void auBase::SetName (const char * name) [virtual]

o SetName - sets the name of this object.

7. Member Data Documentation
• auBase::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented in auChannel, auListener, auSound auSource, and
auSystem.

• char auBase::mName[128] [protected]

o Reimplemented in auSource.

124

The documentation for this class was generated from the following files:
• aubase.h
• aubase.cpp

B. AUCHANNEL CLASS REFERENCE
#include <auchannel.h>

1. Public Methods
• auChannel (int channel, const char *name=0)

Constructor.

• virtual ~auChannel ()
Destructor.

• bool SetChannel (int channel)
SetChannel - sets input ausim3D channel.

• int GetChannel (void)
• bool LinkToListener (auListener *listener)

LinkToListener - links source to specified auListener.

• bool UnLink ()
Unlink - unlinks source to all auListeners.

• bool SetExclusive (auListener *listener)
SetExclusive - directs this channel exclusively to specified listener.

• bool RemExclusive ()
RemExclusive - removes any exclusivity of this source to any listener.

• bool SetVolumeForListener (auListener *listener, float dB)
SetVolumeForListener - sets volume to the specified listener.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: auChannel
Function: Class representing all aspects of an ausim source generated from a live audio feed.
Contains methods for setting/getting source position, radiation patterns, names, and source-
specific rolloff. Contains methods to link/unlink to specified listener.

125

4. Constructor and Destructor Documentation
• auChannel::auChannel (int channel, const char * name = 0)

o Constructor.
o Function: Constructor
o Purpose: Creates new channel
o Parameters:

� channel - channel number of this channel - corresponds to input on
ausim3D

� name - string for name of this channel

• auChannel::~auChannel () [virtual]
o Destructor.
o Function: Destructor
o Purpose: Destroys this channel

5. Member Function Documentation
• int auChannel::GetChannel (void) [inline]

o GetChannel - gets input ausim3D channel

• bool auChannel::LinkToListener (auListener * listener)
o LinkToListener - links source to specified auListener.
o Function: LinkToListener
o Purpose: Link this source to the specified auListener
o Parameters:

• listener - the auListener to link with

• bool auChannel::RemExclusive ()
o RemExclusive - removes any exclusivity of this source to any listener.
o Function: RemExclusive
o Purpose: removes any exclusivity setting from this sound

• bool auChannel::SetChannel (int channel)

o SetChannel - sets input ausim3D channel.
o Function: SetChannel
o Purpose: Set the channel for this course
o Parameters:

� channel - the channel of this source

• bool auChannel::SetExclusive (auListener * listener)
o SetExclusive - directs this channel exclusively to specified listener.
o Function: SetExclusive
o Purpose: sets this channel to only be heard by specified listener
o Parameters:

126

� listener - the exclusive auListener to be heard by

• bool auChannel::SetVolumeForListener (auListener * listener, float volume)
o SetVolumeForListener - sets volume to the specified listener.
o Function: SetVolumeForListener
o Purpose: sets this channel's volume for a specified listener
o Parameters:

� listener - the auListener

• bool auChannel::UnLink ()
o Unlink - unlinks source to all auListeners.
o Function: LinkToListener
o Purpose: Link this source to the specified auListener
o Parameters:

� listener - the auListener to link with

6. Member Data Documentation
• auChannel::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auSource.

The documentation for this class was generated from the following files:

• auchannel.h
• auchannel.cpp

C. AULIST CLASS REFERENCE
#include <aulist.h>

1. Public Methods
• auList (int numElements=0)

Constructor.

• virtual ~auList ()
Destructor.

• void Rem (auBase *data)
Rem - removes object from list.

• int GetNum (void)
GetNum - gets the number of objects in the list.

• void * Get (const int elementIdx)
Get - gets the object at the specified index.

• void Add (auBase *data)

127

Add - adds an object to the end of the list.

• void InsertAt (auBase *data, int elementIdx)
InsertAt - inserts an object at the specified index in the list.

• void Clear (void)
Clear - removes all objects from the list.

2. Constructor and Destructor Documentation
• auList::auList (int numElements = 0)

o Constructor.
o Function: Constructor
o Purpose: Creates new auList
o Parameters:

� numElements - number of initial slots for elements

• auList::~auList () [virtual]
o Destructor.
o Function: Destructor
o Purpose: Destroys auList

3. Member Function Documentation
• void auList::Add (auBase * data)

o Add - adds an object to the end of the list.
o Function: Add
o Purpose: Add an element to the list
o Parameters:

� data auBase derived object to add to the list

• void auList::Clear (void)
o Clear - removes all objects from the list.
o Function: Clear
o Purpose: clears all elements from the list.

• void * auList::Get (const int elementIdx)

o Get - gets the object at the specified index.
o Function: Get
o Purpose: Get one element from the list.
o Parameters:

� elementIdx index of the element to get
o Returns:

� pointer to the element at the specified index

• int auList::GetNum (void)

128
o GetNum - gets the number of objects in the list.

o Function: GetNum
o Purpose: Get the number of elements in the list.
o Returns:

� number of elements in the list.

• void auList::InsertAt (auBase * data, int elementIdx)
o InsertAt - inserts an object at the specified index in the list.
o Function: InsertAt
o Purpose: Inserts an element at the specified index
o Parameters:

� data auBase-derived object to insert
� elementIdx index to insert at

• void auList::Rem (auBase * data)

o Rem - removes object from list.
o Function: Rem
o Purpose: Remove an item from the list.
o Parameters:

� data The element to remove NOTE: This will not delete the memory, only
remove a reference count from the data and take it out of the list. If the
reference count of data is zero, it will delete itself.

The documentation for this class was generated from the following files:

• aulist.h
• aulist.cpp

D. AULISTENER CLASS REFERENCE
#include <aulistener.h>

1. Public Methods
• auListener (const char *name=0)

Constructor.

• virtual ~auListener ()
Destructor.

• bool SetVoiceInputChannel (int channel)
SetVoiceInputChannel - sets the channel for voice input.

• bool SetHRTF (const char *hrtfName)
SetHRTF - sets user specified HRTF in ausim3D.

• const char * GetHRTF () const

129

• bool SetPosition (auPosition *pos=NULL)

SetPosition - updates position.

• void GetPosition (auPosition *pos)
GetPosition - returns current position.

• int GetID () const

• bool SetMouthOffset (auPosition *pos)
SetMouthOffset - sets offset for mouth position from ears.

• bool SetMouthRadPattern (auRadPattern *pattern)
SetMouthRadPattern - sets radiation pattern of mouth.

• void GetMouthRadPattern (auRadPattern *pattern)
GetMouthRadPattern - gets radiation pattern of mouth.

• bool SetMouthVolume (float dB)
SetMouthVolume - sets the overall volume of the mouth source.

• bool DecreaseMouthVolume (float dBamount)
DecreaseMouthVolume - decreases the mouth volume by the specified factor.

• bool IncreaseMouthVolume (float dBamount)
IncreaseMouthVolume - increases the mouth volume by the specified factor.

• bool SetExclusive (auListener *listener)
SetExclusive - sets this listener's voice exclusive to specified listener.

• bool RemExclusive ()
RemExclusive - removes the exclusivity of this listener to the specified listener.

• bool SetVolumeForListener (auListener *listener, float dB)
SetVolumeForListener - sets volume of this listener's voice to the specified auListener.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: auListener

130

Function: Class to handle all aspects of ausim3D listener management. Contains methods to
get/set positions, get/set voice radiation patterns, get/set HRTFs for individual listeners, and set

the offset for the listener’s mouth. Permits output to auServerGUI browser windows, consoles,
and text files.

4. Constructor and Destructor Documentation
• auListener::auListener (const char * name = 0)

o Constructor.
o Function: Constructor
o Purpose: Create new listener
o Parameters:

� id - source id for this listener's voice
� name - name of the listener

• auListener::~auListener () [virtual]

o Destructor.
o Function: Destructor
o Purpose: Destroys the listener

5. Member Function Documentation
• bool auListener::DecreaseMouthVolume (float dBamount)

o DecreaseMouthVolume - decreases the mouth volume by the specified factor.
o Function: DecreaseMouthVolume
o Purpose: Decreases the volume of the mouth - uniformly applied across

radiation pattern if one exists
o Parameters:

� dBamount The amount of decibels to reduce the mouth volume
Remember: a reduction of 3 dB reduces intensity by 50%

• const char* auListener::GetHRTF () const [inline]

o GetHRTF - gets name of HRTF file

• int auListener::GetID () const [inline]
o GetID - returns listener ID number

• void auListener::GetMouthRadPattern (auRadPattern * pattern)

o GetMouthRadPattern - gets radiation pattern of mouth.
o Function: GetMouthRadPattern
o Purpose: Gets the radiation pattern of the mouth
o Parameters:

• pos - auRadPattern representing the radiation pattern of the mouth

• void auListener::GetPosition (auPosition * pos)
o GetPosition - returns current position.
o Function: GetPosition
o Purpose: Gets the position of the listener
o Parameters:

131

o pos - auPosition representing the location of the listener

• bool auListener::IncreaseMouthVolume (float dBamount)

o IncreaseMouthVolume - increases the mouth volume by the specified factor.
o Function: IncreaseMouthVolume
o Purpose: Increases the volume of the mouth - uniformly applied across radiation

pattern if one exists
o Parameters:

� dBamount - the amount of decibels to increase the mouth volume
Remember: a increase of 3 dB increases intensity by 50%

• bool auListener::RemExclusive ()

o RemExclusive - removes the exclusivity of this listener to the specified listener.

• bool auListener::SetExclusive (auListener * listener)
o SetExclusive - sets this listener's voice exclusive to specified listener.

• bool auListener::SetHRTF (const char * hrtfName)

o SetHRTF - sets user specified HRTF in ausim3D.
o Function: SetHRTF
o Purpose: Sets the HRTF of the listener
o Parameters:

• name - string for HRTF of listener

• bool auListener::SetMouthOffset (auPosition * pos)
o SetMouthOffset - sets offset for mouth position from ears.
o Function: SetMouthOffset
o Purpose: Sets the position of the mouth relative to the ears
o Parameters:

• pos - auPosition representing the relative location of the mouth

• bool auListener::SetMouthRadPattern (auRadPattern * pattern)
o SetMouthRadPattern - sets radiation pattern of mouth.
o Function: SetMouthRadPattern
o Purpose: Sets the radiation pattern of the mouth
o Parameters:

• pos - auRadPattern representing the radiation pattern of the mouth

• bool auListener::SetMouthVolume (float dB)
o SetMouthVolume - sets the overall volume of the mouth source.
o Function: SetMouthVolume
o Purpose: Sets the volume of the mouth - uniformly applied across radiation

pattern if one exists
o Parameters:

132

• dB The volume, in decibels; vol < -120 is equivalent to turning off
source Remember: a reduction of 3 dB reduces intensity by 50%

• bool auListener::SetPosition (auPosition * pos = NULL)

o SetPosition - updates position.
o Function: SetPosition
o Purpose: Sets the position of the listener
o Parameters:

• posit - auPosition for the location of the listener

• bool auListener::SetVoiceInputChannel (int channel)
o SetVoiceInputChannel - sets the channel for voice input.
o Function: SetVoiceInputChannel
o Purpose: Sets the voice input channel on ausim3D
o Parameters:

• channel - channel number for voice input

• bool auListener::SetVolumeForListener (auListener * otherListener, float dB)

o SetVolumeForListener - sets volume of this listener's voice to the specified
auListener.

o Function: SetVolumeForListener
o Purpose: sets this channel's volume for a specified listener
o Parameters:

• listener - the auListener
• dB volume of the source in dB; 0.0f is maximum (original source

volume) and negative values reduce volume intensity Remember: a
reduction of 3 dB reduces intensity by 50%

6. Member Data Documentation
• auListener::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auSource.

The documentation for this class was generated from the following files:

• aulistener.h
• aulistener.cpp

E. AUPOSITION CLASS REFERENCE
#include <auposition.h>

1. Public Methods
• auPosition ()

Constructor - default.

• auPosition (const float posit[])

133

Constructor - takes array of 6 floats.

• auPosition (const float x, const float y, const float z, const float h, const float p, const float
r)

Constructor - takes 6 individual floats.

• virtual ~auPosition ()
Destructor.

• void Set (const float x, const float y, const float z, const float h, const float p, const float r)
Set - sets position from 6 individual floats.

• float X (void)

• float Y (void)

• float Z (void)

• float H (void)

• float P (void)

• float R (void)

• void X (float x)
X - sets x value.

• void Y (float y)
Y - sets y value.

• void Z (float z)
Z - sets z value.

• void H (float h)
H - sets heading.

• void P (float p)
P - sets pitch.

• void R (float r)
R - sets roll.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

134

Class: auPosition
Function: Simple class to represent six floats for source/listener position. Six floats represent x,
y, z positions and heading, pitch, and roll. Ausim3D uses a right-handed coordinate system
where the default is x-forward, y-left, and z-up.

4. Constructor and Destructor Documentation
• auPosition::auPosition ()

o Constructor - default.
o Function: Constructor
o Purpose: Create new auPosition object with all values - 0.0f

• auPosition::auPosition (const float posit[])

o Constructor - takes array of 6 floats.
o Function: Constructor
o Purpose: Create new auPosition object
o Parameters:

• posit - array of 6 floats for x,y,z,h,p,r

• auPosition::auPosition (const float x, const float y, const float z, const float h, const float
p, const float r)

o Constructor - takes 6 individual floats.
o Function: Constructor
o Purpose: Create new auPosition object
o Parameters:

• x - the x value
• y - the y value
• z - the z value
• h - the h value
• p - the p value
• r - the r value

• auPosition::~auPosition () [virtual]

o Destructor.
o Function: Destructor
o Purpose: Destroy this auPosition object

5. Member Function Documentation
• void auPosition::H (float h)

o H - sets heading.
o Function: H
o Purpose: Input H into auPosition
o Parameters:

� h - the new heading

135

• float auPosition::H (void) [inline]
o H - gets heading

• void auPosition::P (float p)

o P - sets pitch.
o Function: P
o Purpose: Input P into auPosition
o Parameters:

� px - the new pitch

• float auPosition::P (void) [inline]
o P - gets pitch

• void auPosition::R (float r)

o R - sets roll.
o Function: R
o Purpose: Input R into auPosition
o Parameters:

� r - the new roll

• float auPosition::R (void) [inline]
o R - gets roll

• void auPosition::Set (const float x, const float y, const float z, const float h, const float p,

const float r)
o Set - sets position from 6 individual floats.
o Function: Set
o Purpose: Set the values of the auPosition
o Parameters:

• x - the x value
• y - the y value
• z - the z value
• h - the h value
• p - the p value
• r - the r value

• void auPosition::X (float x)

o X - sets x value.
o Function: X
o Purpose: Input X into auPosition
o Parameters:

• x - the new x position

• float auPosition::X (void) [inline]
o X - gets x value

136

• void auPosition::Y (float y)
o Y - sets y value.
o Function: Y
o Purpose: Input Y into auPosition
o Parameters:

� y - the new y position

• float auPosition::Y (void) [inline]
o Y - gets y value

• void auPosition::Z (float z)

o Z - sets z value.
o Function: Z
o Purpose: Input Z into auPosition
o Parameters:

� z - the new z position

• float auPosition::Z (void) [inline]
o Z - gets z value

6. Member Data Documentation
• auPosition::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auRefData.

The documentation for this class was generated from the following files:

• auposition.h
• auposition.cpp

F. AURADPATTERN CLASS REFERENCE
#include <auradpattern.h>

1. Public Methods
• auRadPattern (float deg0=0.0f, float deg90=0.0f, float deg180=0.0f)

Constructor.

• virtual ~auRadPattern ()
Destructor.

• float Get (int index)
Get - gets value at specified index.

• void Set (int index, float value)
Set - sets the value at the specified index.

137

• int GetSize ()

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: auRadPattern
Function: Simple class to represent three floats for source/voice radiation patterns. Three floats
represent radiation pattern at 0 deg, +/- 90 deg, and 180 deg relative to source.

4. Constructor and Destructor Documentation
• auRadPattern::auRadPattern (float deg0 = 0.0f, float deg90 = 0.0f, float deg180 = 0.0f)

o Constructor.
o Function: Constructor
o Purpose: creates new auRadPattern with all values = 0.0f

• auRadPattern::~auRadPattern () [virtual]

o Destructor.
o Function: Destructor
o Purpose: Destroys this auRadPattern

5. Member Function Documentation
• float auRadPattern::Get (int index)

o Get - gets value at specified index.
o Function: Get
o Purpose: Get the value at the specified index
o Parameters:

� index - the index
o Returns:

� float - the value of the radiation pattern at the specified index if index
out of bounds, returns -9999.0

• int auRadPattern::GetSize () [inline]

o GetSize - returns number of elements in radiation pattern

• void auRadPattern::Set (int index, float value)
o Set - sets the value at the specified index.
o Function: Set
o Purpose: Set the value at the specified index
o Parameters:

� index - the index

138

� value - the value of the radiation pattern at the specified index

6. Member Data Documentation
• auRadPattern::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auRefData.

The documentation for this class was generated from the following files:

• auradpattern.h
• auradpattern.cpp

G. AUREFDATA CLASS REFERENCE
#include <aurefdata.h>

1. Public Methods
• auRefData ()
• virtual ~auRefData ()

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: auRefData
Function: Class to package data packets for transmission within AuServerLib

4. Constructor and Destructor Documentation
• auRefData::auRefData ()

o Function: Constructor
o Purpose: Create new auRefData

• auRefData::~auRefData () [virtual]

o Function: Destructor
o Purpose: Destroys auRefData

5. Member Data Documentation
• auRefData::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented in auPosition, and auRadPattern.

The documentation for this class was generated from the following files:

• aurefdata.h
• aurefdata.cpp

139

H. AUSERVERGUI CLASS REFERENCE
#include <auserverGUI.h>

1. Public Methods
• auServerGUI ()

Constructor.

• virtual ~auServerGUI ()
Destructor.

2. Detailed Description

Class: auServerGUI
Function: Class for displaying pertinent information about auListeners, auSounds, and
auChannels. Contains methods for manipulating all parameters of these objects. Contains
methods for setting global parameters: Rolloff and Absorption.

3. Constructor and Destructor Documentation
• auServerGUI::auServerGUI ()

o Constructor.
o Function: Constructor
o Purpose: creates new auServerGUI

• auServerGUI::~auServerGUI () [virtual]

• Destructor.
• Function: Destructor
• Purpose: Destroys the gui

The documentation for this class was generated from the following files:

• auserverGUI.h
• auserverGUI.cpp

I. AUSOUND CLASS REFERENCE
#include <ausound.h>

1. Public Methods
• auSound (const char *filename, const char *name)

Constructor.

• virtual ~auSound ()
140

Destructor.

• bool Play ()
Play - plays sound.

• bool IsPlaying ()
IsPlaying - tells whether sound is playing; TRUE = playing.

• bool Loop ()
Loop - loops sound.

• bool Stop ()
Stop = stops playing.

• bool Rewind ()
Rewind - rewinds sound to beginning.

• bool LinkToListener (auListener *listener)
LinkToListener - links source to specified auListener.

• bool UnLink ()
Unlink - unlinks source to all auListeners.

• bool SetExclusive (auListener *listener)
SetExclusive - directs this channel exclusively to specified listener.

• bool RemExclusive ()
RemExclusive - removes any exclusivity of this source to any listener.

• bool SetVolumeForListener (auListener *listener, float dB)
SetVolumeForListener - sets volume to the specified listener.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Detailed Description

Class: auSound
Function: Class representing all aspects of an ausim source generated from a wave file. Contains
methods for setting/getting source position, radiation patterns, names, and source-specific rolloff.
Contains methods to link/unlink to specified listener.

4. Constructor and Destructor Documentation

141

• auSound::auSound (const char * filename, const char * name)
o Constructor.
o Function: Constructor
o Purpose: Creates new auSound object
o Parameters:

� source - source ID for this sound
� name - name of this sound - also the name of the wav file

• auSound::~auSound () [virtual]

o Destructor.
o Function: Destructor
o Purpose: Destroys this source; closes wav file structure

5. Member Function Documentation
• bool auSound::IsPlaying ()

o IsPlaying - tells whether sound is playing; TRUE = playing.
o Function: IsPlaying
o Purpose: Indicated whether sound is playing; TRUE = playing
o Returns:

� bool - true = playing; false = not playing

• bool auSound::LinkToListener (auListener * listener)
o LinkToListener - links source to specified auListener.
o Function: LinkToListener
o Purpose: Link this source to the specified auListener
o Parameters:

� listener - the auListener to link with

• bool auSound::Loop ()
o Loop - loops sound.
o Function: Loop
o Purpose: Loops this sound continuously until Stop() called

• bool auSound::Play ()

o Play - plays sound.
o Function: Play
o Purpose: Plays this sound once

• bool auSound::RemExclusive ()

o RemExclusive - removes any exclusivity of this source to any listener.
o Function: RemExclusive
o Purpose: removes any exclusivity setting from this sound

• bool auSound::Rewind ()

142

o Rewind - rewinds sound to beginning.
o Function: Rewind
o Purpose: Rewinds the play counter for the wav file to the starting position

• bool auSound::SetExclusive (auListener * listener)

o SetExclusive - directs this channel exclusively to specified listener.
o Function: SetExclusive
o Purpose: sets this sound to only be heard by specified listener
o Parameters:

� listener - the exclusive auListener to be heard by

• bool auSound::SetVolumeForListener (auListener * listener, float volume)
o SetVolumeForListener - sets volume to the specified listener.
o Function: SetVolumeForListener
o Purpose: sets this channel's volume for a specified listener
o Parameters:

� listener - the auListener

• bool auSound::Stop ()
o Stop = stops playing.
o Function: Stop
o Purpose: Stops play on this sound

• bool auSound::UnLink ()

o Unlink - unlinks source to all auListeners.
o Function: LinkToListener
o Purpose: Link this source to the specified auListener
o Parameters:

• listener - the auListener to link with

6. Member Data Documentation
• auSound::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auSource.

The documentation for this class was generated from the following files:

• ausound.h
• ausound.cpp

J. AUSOURCE CLASS REFERENCE
#include <ausource.h>

1. Public Methods
143

• auSource ()
Constructor.

• virtual ~auSource ()
Destructor.

• bool SetPosition (auPosition *pos)
SetPosition - sets source's position.

• void GetPosition (auPosition *pos)
GetPosition - gets source's position.

• bool SetRadPattern (auRadPattern *pattern)
SetRadPattern - sets radiation pattern.

• void GetRadPattern (auRadPattern *pattern)
GetRadPattern - gets source's radiation pattern.

• bool SetRolloff (float factor)
SetRolloff - sets source's rolloff.

• const float GetRolloff ()

• const char * GetLinkName ()

• bool SetSpatial (bool spatial=true)
SetSpatialOff - removes source from spatialization.

• bool SetPan (float panLeftDB=0.0f, float panRightDB=0.0f)
SetPan - sets the left and right pan settings.

• float GetPanLeft ()
GetPanLeft - returns pan left setting when spatialization off; 9999 indicates spatialization on.

• float GetPanRight ()
GetPanRight - returns pan right setting when spatialization off; 9999 indicates spatialization on.

• int GetID ()

• bool SetVolume (float dB)
SetVolume - sets the volume of the source in dB.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

144

3. Protected Methods
• bool SetSpatialSettings ()

SetSpatialSettings - sets the spatial and pan settings.

4. Protected Attributes
• char mName [128]
• char mLinkName [128]
• int mSourceID
• auRadPattern * mRad
• auPosition * mPos
• float mRolloff
• float mPanLeft
• float mPanRight
• bool mSpatial
• float mVolume
• bool isConfigured

5. Detailed Description

Class: auSource
Function: Base class for auSound and auChannel classes. Contains methods for setting/getting
source position, radiation patterns, names, and source-specific rolloff. Contains methods to
link/unlink to specified listener. NOTE: Developers should NOT directly instantiate objects of
this class.

6. Constructor and Destructor Documentation
• auSource::auSource ()

o Constructor.
o Function: Constructor
o Purpose: Creates new auSource object

• auSource::~auSource () [virtual]

o Destructor.
o Function: Destructor
o Purpose: Destroy this source

7. Member Function Documentation
• int auSource::GetID () [inline]

o GetID - returns source ID

• const char* auSource::GetLinkName () [inline]

145

o GetLinkName - returns name of auListener linked with

• float auSource::GetPanLeft ()
o GetPanLeft - returns pan left setting when spatialization off; 9999 indicates

spatialization on.
o Function: GetPanLeft
o Purpose: gets the pan left setting when spatialization is off; 9999 indicates

spatialization on
o Returns:

• pan left setting, if not spatial return 9999.0

• float auSource::GetPanRight ()
o GetPanRight - returns pan right setting when spatialization off; 9999 indicates

spatialization on.
o Function: GetPanRight
o Purpose: gets the pan right setting when spatialization is off; 9999 indicates

spatialization on
o Returns:

• pan right settings

• void auSource::GetPosition (auPosition * pos)
o GetPosition - gets source's position.
o Function: GetPosition
o Purpose: Get the position of this source
o Parameters:

• pos - auPosition of source
o Reimplemented in auListener.

• void auSource::GetRadPattern (auRadPattern * pattern)

o GetRadPattern - gets source's radiation pattern.
o Function: GetRadPattern
o Purpose: Get the radiation pattern of this source
o Parameters:

� pattern - auRadPattern of source

• const float auSource::GetRolloff () [inline]
o GetRolloff - gets source's rolloff factor

• bool auSource::SetPan (float panLeftDB = 0.0f, float panRightDB = 0.0f)

o SetPan - sets the left and right pan settings.
o Function: SetPan
o Purpose: sets this source as spatialized with specified pan settings
o Parameters:

� panLeftDB gain for left output when non-spatialized; 0.0 = full
volume, -120.0 = fully attenuated

146

� panRightDB gain for right output when non-spatialized; 0.0 = full
volume, -120.0 = fully attenuated

• bool auSource::SetPosition (auPosition * pos)

o SetPosition - sets source's position.
o Function: SetPosition
o Purpose: Set the position of this source
o Parameters:

� pos - auPosition of source
o Reimplemented in auListener.

• bool auSource::SetRadPattern (auRadPattern * pattern)

o SetRadPattern - sets radiation pattern.
o Function: SetRadPattern
o Purpose: Set the radiation pattern of this source
o Parameters:

� pattern - auRadPattern of source

• bool auSource::SetRolloff (float factor)
o SetRolloff - sets source's rolloff.
o Function: SetRolloff
o Purpose: Sets the source specific rolloff multiplier - multiplies against global

rolloff factor range limited to (0.0f, 5.0f) 0.0f = no individualized source-
specific rolloff factor 5.0f = maximum source-specific rolloff multiplicative
factor

o Parameters:
� factor - multiplicative factor for source specific rolloff

• bool auSource::SetSpatial (bool spatial = true)

o SetSpatialOff - removes source from spatialization.
o Function: SetSpatial
o Purpose: sets this source as either non-spatialized or spatialized
o Parameters:

� spatial - bool indicating whether spatial or not

• bool auSource::SetSpatialSettings () [protected]
o SetSpatialSettings - sets the spatial and pan settings.
o Function: SetSpatialSettings
o Purpose: sets this source's spatialization and pan settings

• bool auSource::SetVolume (float dB)

o SetVolume - sets the volume of the source in dB.
o Function: SetVolume
o Purpose: sets the volume of this source
o Parameters:

147

� dB volume of the source in dB; 0.0f is maximum (original source
volume) and negative values reduce volume intensity Remember: a
reduction of 3 dB reduces intensity by 50%.

8. Member Data Documentation
• auSource::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auBase.

• bool auSource::isConfigured [protected]
o indicates whether source is configured

• char auSource::mLinkName[128] [protected]

o name of the listener this source is linked to

• char auSource::mName[128] [protected]
o name of this source

• float auSource::mPanLeft [protected]

o pan left setting for this source when spatialization off

• float auSource::mPanRight [protected]
o pan right setting for this source when spatialization off

• auPosition* auSource::mPos [protected]

o the position of this source

• auRadPattern* auSource::mRad [protected]
o radiation pattern for this source

• float auSource::mRolloff [protected]

o rolloff factor of this source

• int auSource::mSourceID [protected]
o source ID number

• bool auSource::mSpatial [protected]

o indicates whether spatialization is ON (true) or OFF (false)

• float auSource::mVolume [protected]
o stored volume setting for this source

148

The documentation for this class was generated from the following files:
• ausource.h
• ausource.cpp

K. AUSYSTEM CLASS REFERENCE
#include <ausystem.h>

1. Public Methods
• auSystem (const char *name=0)

Constructor.

• virtual ~auSystem ()
Destructor.

• void Run (void)
Set the system to Run. This is a blocking call.

• bool IsConfigured (void) const

• void Config (void)
Configure the system.

• void Exit ()
Exit - quit application.

• void Init (int argc=0, char **argv=NULL)
Init - init the application.

• void SetUpdateInterval (const double interval)
SetUpdateInterval - Set the tick interval time.

2. Public Attributes
• GZ_DECLARE_TYPE_INTERFACE

3. Constructor and Destructor Documentation
• auSystem::auSystem (const char * name = 0)

o Constructor.
o Function: Constructor
o Purpose: Creates new auSysytem

• auSystem::~auSystem () [virtual]

o Destructor.

149

o Function: Destructor
o Purpose: destroys auSysytem

4. Member Function Documentation
• void auSystem::Config (void)

o Configure the system.
o Function: Config
o Purpose: Public function to configure the system. Typically called once to

finish setting up all the au classes.

• void auSystem::Exit ()
o Exit - quit application.
o Function: Exit
o Purpose: exits from auSysytem and shuts down

• void auSystem::Init (int argc = 0, char ** argv = NULL)

o Init - init the application.

• bool auSystem::IsConfigured (void) const [inline]
o Has the auSystem been configured yet?

• void auSystem::Run (void)

o Set the system to Run. This is a blocking call.
o Function: Run
o Purpose: Sets the auSystem in motion, never to return until an exit event is

triggered.

• void auSystem::SetUpdateInterval (const double interval)
o Set the tick interval time.
o Function: SetTickInterval
o Purpose: Set the time interval that the system should use for the “tick” message.

This is an optional message that gets reliably sent out every interval seconds.
o Parameters:

• interval - In seconds

5. Member Data Documentation
• auSystem::GZ_DECLARE_TYPE_INTERFACE

o Reimplemented from auBase.

The documentation for this class was generated from the following files:

• ausystem.h
• ausystem.cpp

150

L. UPDATEGUI CLASS REFERENCE
#include <auserverGUI.h>

1. Public Methods
• UpdateGUI ()

Constructor.

• virtual ~UpdateGUI ()
Destructor.

2. Detailed Description

Class: UpdateGUI
Function: Simple thread class to manage continuous updating of gui parameters.
NOTE: Developers should NOT directly instantiate objects of this class. Use of auServerGUI
will automatically create this thread for automatic updating.

3. Constructor and Destructor Documentation
• UpdateGUI::UpdateGUI ()

o Constructor.
o Function: Constructor
o Purpose: creates new UpdateGUI thread

• UpdateGUI::~UpdateGUI () [virtual]

o Destructor.
o Function: Destructor
o Purpose: Destroys UpdateGUI thread

The documentation for this class was generated from the following files:

• auserverGUI.h
• auserverGUI.cpp

151

THIS PAGE INTENTIONALLY LEFT BLANK

152

APPENDIX C. VOICE LATENCY DATA

A. INTRODUCTION
The following table lists the observed latency measurements for both the

Ausim3D GoldServe and DirectVoice VoIP live voice implementations.

Run GoldServe DirectVoice
1 13.4 186
2 13.2 212
3 13.2 234
4 13.1 196
5 13.0 206
6 13.4 214
7 13.5 202
8 12.8 218
9 13.1 186
10 13.0 220
11 13.4 190
12 13.4 230
13 13.1 196
14 13.1 226
15 12.7 192
16 13.3 222
17 13.0 184
18 12.9 216
19 13.0 190
20 13.2 218
21 13 190
22 13 216
23 12.8 192
24 -- 222
25 -- 194
26 -- 186
27 -- 204
28 -- 186
29 -- 218
30 -- 200

153

B. AUSIM3D GOLDSERVE DATA

Run 1:

Run 2:

Run 3:

154

Run 4:

Run 5:

Run 6:

155

Run 7:

Run 8:

Run 9:

156

Run 10:

Run 11:

Run 12:

157

Run 13:

Run 14:

Run 15:

158

Run 16:

Run 17:

Run 18:

159

Run 19:

Run 20:

Run 21:

160

Run 22:

Run 23:

:

C. DIRECTVOICE DATA
Run 1:

161

Run 2:

Run 3:

Run 4:

162

Run 5:

Run 6:

Run 7:

163

Run 8:

Run 9:

Run 10:

164

Run 11:

Run 12:

Run 13:

165

Run 14:

Run 15:

Run 16:

166

Run 17:

Run 18:

Run 19:

167

Run 20:

Run 21:

Run 22:

168

Run 23:

Run 24:

Run 25:

169

Run 26:

Run 27:

Run 28:

170

Run 29:

Run 30:

171

D. SAMPLE DIRECTVOICE LIVE VOICE

172

LIST OF REFERENCES

[Ausim3D, http://www.ausim3d.com]

Baldis, J. J., Effects of Spatial Audio on Memory, Comprehension, and Preference
During Desktop Conferences, Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 166-173, 2001.

Begault, D. R. and Wenzel, E. M., Headphone Localization of Speech, Human Factors,
The Human Factors and Ergonomics Society, Vol. 35, No. 2, pp. 361-376, 1993.

Begault, D. R., 3D Sound for Virtual Reality and Multimedia, Academic Press, Boston,
1994.

Blauert, J., Spatial Hearing: The Psychophysics of Human Sound Localization, MIT
Press, Cambridge, MA, 1974.

Bolot, J. C. and Fosse-Parisis, S., Adding Voice to Distributed Games on the Internet,
Conference on Computer Communications (IEEE Infocom), San Francisco, CA, 1998.

Brown, J. S., Collins, A. and Dugui, P., Situated Cognition and the Culture of Learning,
Educational Researcher; Vol. 18, No. 1, pp. 32-42, 1989.

Brungart, D. S. and Simpson, B. D., Distance-Based Speech Segregation in Near-Field
Virtual Audio Displays, Proceedings of the 2001 International Conference on Auditory
Displays, Espoo, Finland, 2001.

Campbell, J. R., The Effect of Sound Spatialization on Responses to Overlapping
Messages, Master’s Thesis, Naval Postgraduate School, Monterey, CA, 2002.

Chi, M. T., Glaser, R. and Farr, M. J., The Nature of Expertise, Lawrence-Erlbaum
Associates, Hillsdale, NJ, 1998.

Dinh, H. Q., Walker, N., Song, C., Kobayashi, A. and Hodges, L. F., Evaluating the
Importance of Multi-Sensory Input on the Sense of Presence in Virtual Environments,
Proceedings of IEEE Virtual Reality, Houston, TX, 1999.

EAX 3.0 Software Development Kit (SDK), [http://developer.creative.com]

Grassi, C. R., A Task Analysis of Pier Side Ship- Handling for Virtual Environment Ship-
Handling Scenario Development, Master’s Thesis, Naval Postgraduate School, Monterey,
CA, 2000.

Greenwald, T. W., An Analysis of Auditory Cues for Inclusion in a Virtual Close
Quarters Combat Room Clearing Scenario, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, 2002.

173

Microsoft DirectX 8.1 Software Development Kit (SDK),
[http://www.microsoft.com\windows\directx]

Nelson, W. T., Bolia, R. S., Ericson, M. A. and McKinley, R. L., Spatial Audio Displays
for Speech Communications: A Comparison of Free Field and Virtual Acoustic
Environments, Proceedings of the Human Factors and Ergonomics Society 43rd Annual
Meeting, Houston, TX, pp. 1202-1205, 1999.

Norris, S. D., A Task Analysis of Underway Replenishment for Virtual Environment Ship-
Handling Scenario Development, Master’s Thesis, Naval Postgraduate School, Monterey,
CA, 2000.

OpenAL Software Development Kit (SDK), [http://www.openal.org] or
[http://developer.creative.com]

Posner, M., Introduction: What Is It To Be an Expert?, University of Oregon, 1983.

Scourgie, M. and Sanders, R., The Effect of Sound Delivery Methods on a User’s Sense of
Presence in a Virtual Environment, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, 2002.

Wenzel, E. M., Effect of Increasing System Latency on Localization of Virtual Sounds,
Proceedings of the Audio Engineering Society 16th International Conference on Spatial
Sound Reproduction, Rovaneimi, Finland, pp. 42-50, 1999.

Wickens, C. D. and Hollands, J. G., Engineering Psychology and Human Performance,
3rd Edition, Prentice-Hall, Upper Saddle River, NJ, 1999.

Yewdall, D., Practical Art of Motion Picture Sound, Focal Press, Boston, MA, 1999.

Yost, W. A., Dye, R. H. and Sheft, S., A., Simulated “Cocktail Party” with Up to Three
Sound Sources, Perception and Psychophysics, Vol. 58, pp. 1026-1036, 1996.

174

BIBLIOGRAPHY

Shilling, R. D. and Shinn-Cunningham, B. G., Virtual Auditory Displays, Handbook
of Virtual Environment Technology, K. Stanney (ed), Lawrence Erlbaum, Associates,
Inc., New York, 2002.

Shinn-Cunningham, B. G., Applications of Virtual Auditory Displays, Proceedings of
the 20th International Conference of the IEEE, Hong Kong, China, Vol. 20, No. 3,
pp. 1105-1108, 1998.

Shinn-Cunningham, B. G., Spatial Auditory Displays, International Encyclopedia of
Ergonomics and Human Factors, W. Karwowski (ed), London: Taylor and Francis
Ltd., 2001.

Wenzel, E. M., Wightman, F. L. and Kistler, D. J., Localization with Non-
Individualized Virtual Acoustic Display Cues, Conference on Human Factors and
Computing Systems, New Orleans, LA, pp. 351-359, 1991.

175

THIS PAGE INTENTIONALLY LEFT BLANK

176

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Michael Zyda, Chairman
Modeling, Virtual Environments and Simulation (MOVES) Institute
Monterey, California

4. Dr. Russell Shilling
Modeling, Virtual Environments and Simulation (MOVES) Institute
Monterey, California

5. Dr. Rudolph Darken
Modeling, Virtual Environments and Simulation (MOVES) Institute
Monterey, California

6. CDR Eric Krebs
Fairfax, Virginia

177

	I.INTRODUCTION
	A.SOUND IN VIRTUAL ENVIRONMENTS
	B.RESEARCH OBJECTIVE
	C.THESIS ORGANIZATION

	II.BACKGROUND
	A.SPATIAL HEARING AND SOUND
	B.SOUND AND EMOTION
	1.Linking Performance with Optimum Stress or Arousal
	2.Linking Arousal with Audio

	C.SOUND AND TRAINING
	1.Linking Audio with Performance
	2.Linking Performance with Memory, Expertise and Training
	3.Selected Task Analyses
	4.Summary

	D.VOICE OVER IP (VOIP) TECHNOLOGY
	E.LIVE VOICE IN VIRTUAL ENVIRONMENTS
	F.ARCHITECTURAL ACOUSTICS

	III.CURRENT ARCHITECTURE DESIGNS
	A.INTRODUCTION
	B.OPEN AUDIO LIBRARY (OPENAL)
	C.DIRECTSOUND3D(
	D.EAX(3.0
	E.SOFTWARE API SUMMARY
	F.AUDIO RESOURCE MANAGEMENT
	G.AUSIM3D GOLDSERVER
	H.OVERALL SYSTEM ARCHITECTURE

	IV.VOICE LATENCY ANALYSIS
	A.INTRODUCTION
	B.EXPERIMENTAL DESIGN
	1.Apparatus
	2.Procedures

	C.RESULTS AND ANALYSIS
	D.SUMMARY

	V.SOFTWARE IMPLEMENTATION
	A.INTRODUCTION
	B.GFAUDIO
	1.gfAudioGlobal
	2.gfListener
	3.gfSoundObject
	4.gfAudioEnvironment
	5.gfAudioEnvironmentTransition
	6.gfAudioEnvironmentManager
	7.gfNetVoice

	C.AUSERVERLIB
	1.auSystem
	2.auBase
	3.auSource
	4.auListener
	5.auSound
	6.auChannel
	7.auNotify
	8.auTools
	9.Summary

	VI.CONCLUSIONS AND RECOMMENDATIONS
	A.SUMMARY
	B.RECOMMENDATIONS
	C.FUTURE WORK

	APPENDIX A. GFAUDIO DOCUMENTATION
	A.GFAUDIOENVIRONMENT CLASS REFERENCE
	1.Public Types
	2.Public Methods
	3.Public Attributes
	4.Detailed Description
	5.Member Enumeration Documentation
	6.Constructor and Destructor Documentation
	7.Member Function Documentation
	8.Member Data Documentation

	B.GFAUDIOENVIRONMENTMANAGER CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	C.GFAUDIOENVIRONMENTTRANSITION CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	D.GFAUDIONET CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Constructor and Destructor Documentation
	4.Member Data Documentation

	E.GFCUBE CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	F.GFLISTENER CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Protected Methods
	4.Protected Attributes
	5.Detailed Description
	6.Constructor and Destructor Documentation
	7.Member Function Documentation
	8.Member Data Documentation

	G.GFNETVOICE CLASS REFERENCE
	1.Public Methods
	2.Detailed Description
	3.Constructor and Destructor Documentation
	4.Member Function Documentation

	H.GFSHAPE CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Protected Attributes
	4.Detailed Description
	5.Constructor and Destructor Documentation
	6.Member Function Documentation
	7.Member Data Documentation

	I.GFSOUNDOBJECT CLASS REFERENCE
	1.Public Types
	2.Public Methods
	3.Public Attributes
	4.Protected Methods
	5.Protected Attributes
	6.Detailed Description
	7.Member Enumeration Documentation
	8.Constructor and Destructor Documentation
	9.Member Function Documentation
	10.Member Data Documentation

	J.GFSPHERE CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	K.VOICE_INFO STRUCT REFERENCE
	1.Public Attributes
	2.Detailed Description
	3.Member Data Documentation

	APPENDIX B. AUSERVERLIB DOCUMENTATION
	A.AUBASE CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Protected Attributes
	4.Detailed Description
	5.Constructor and Destructor Documentation
	6.Member Function Documentation
	7.Member Data Documentation

	B.AUCHANNEL CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	C.AULIST CLASS REFERENCE
	1.Public Methods
	2.Constructor and Destructor Documentation
	3.Member Function Documentation

	D.AULISTENER CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	E.AUPOSITION CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	F.AURADPATTERN CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	G.AUREFDATA CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Data Documentation

	H.AUSERVERGUI CLASS REFERENCE
	1.Public Methods
	2.Detailed Description
	3.Constructor and Destructor Documentation

	I.AUSOUND CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Detailed Description
	4.Constructor and Destructor Documentation
	5.Member Function Documentation
	6.Member Data Documentation

	J.AUSOURCE CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Protected Methods
	4.Protected Attributes
	5.Detailed Description
	6.Constructor and Destructor Documentation
	7.Member Function Documentation
	8.Member Data Documentation

	K.AUSYSTEM CLASS REFERENCE
	1.Public Methods
	2.Public Attributes
	3.Constructor and Destructor Documentation
	4.Member Function Documentation
	5.Member Data Documentation

	L.UPDATEGUI CLASS REFERENCE
	1.Public Methods
	2.Detailed Description
	3.Constructor and Destructor Documentation

	APPENDIX C. VOICE LATENCY DATA
	A.INTRODUCTION
	B.AUSIM3D GOLDSERVE DATA
	C.DIRECTVOICE DATA
	D.SAMPLE DIRECTVOICE LIVE VOICE

	LIST OF REFERENCES
	BIBLIOGRAPHY
	INITIAL DISTRIBUTION LIST

